Please wait a minute...
Acta Phys. -Chim. Sin.  2014, Vol. 30 Issue (11): 2000-2008    DOI: 10.3866/PKU.WHXB201408291
Molecular Simulations of the Purification of Toxic Benzene Gas on Single-Walled Carbon Nanotubes
College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Download:   PDF(3130KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Grand canonical ensemble Monte Carlo (GCMC) simulations were performed to investigate the purification of benzene from air by single-walled carbon nanotubes (SWNTs). It was found that (20,20) SWNT with a large diameter is suitable to adsorb pure benzene. For the removal of benzene in air, the minimum and maximum selectivities were observed for the (12,12) SWNT at 4.0 MPa and the (18,18) SWNT at 0.1 MPa, respectively. To obtain deep insight into the unusual behavior, we analyzed the local density profiles, snapshots, and probability profiles of N2-O2-C6H6 mixtures. The results showed that the (18,18) SWNT was entirely occupied by benzene molecules, while, for the (12,12) SWNT, N2 andwere prone to appear in the interstices between tubes, instead of inside tubes, because of stronger adsorbate-adsorbent interactions. Additionally, we calculated the orientation order parameters of the adsorbates. The results suggested that benzene molecules prefer lying nearly flat on the pore surface, while N2 and O2 molecules orient parallel to the pore axis. Finally, the effects of temperature and concentration on the selectivity of benzene were investigated. We found that with increasing temperature the selectivity in large pores decreased more evidently than that in small pores. By contrast, the concentration plays a more important role in affecting the selectivity in small pores.

Key wordsGrand canonical ensemble Monte Carlo      Adsorption      Separation      Benzene      Air      Carbon nanotube     
Received: 04 June 2014      Published: 29 August 2014
MSC2000:  O647  

The project was supported by the Open Project of State Key Laboratory of Chemical Engineering, China (SKL-Che-12C01).

Corresponding Authors: PENG Xuan     E-mail:,
Cite this article:

PENG Xuan. Molecular Simulations of the Purification of Toxic Benzene Gas on Single-Walled Carbon Nanotubes. Acta Phys. -Chim. Sin., 2014, 30(11): 2000-2008.

URL:     OR

(1) Benzene Poisoning in Chemical Laboratories. J. Chem. Educ. 1929, 6, 513.
(2) Yan, Y. P.; Chen, F. Z.; Shao, Y. X. Tech. Equip. Environmental Pollut. Control 2000, 1, 76. [颜幼平, 陈凡植, 邵英贤.环境污染治理技术与设备, 2000, 1, 76.]
(3) Peng, X.; Cao, D. AIChE J. 2013, 59, 2928. doi: 10.1002/aic.v59.8
(4) Peng, X.; Cheng, X.; Cao, D. J. Mater. Chem. 2011, 21, 11259. doi: 10.1039/c1jm10264h
(5) Do, D. D.; Do, H. D. Langmuir 2006, 22, 1121. doi: 10.1021/la052545i
(6) Coasne, B.; Fourkas, J. T.; Normale, E. J. Phys. Chem. C 2011, 115, 15471. doi: 10.1021/jp203831q
(7) Jousse, F.; Auerbach, S. M.; Vercauteren, D. P. J. Phys. Chem. B 2000, 104, 2360. doi: 10.1021/jp9935642
(8) Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Angew. Chem. Int. Edit. 2007, 46, 463.
(9) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0
(10) Cinke, M.; Li, J.; Bauschlicher, C.W.; Ricca, A.; Meyyappan, M. Chem. Phys. Lett. 2003, 376, 761. doi: 10.1016/S0009-2614(03)01124-2
(11) Wang,W.; Peng, X.; Cao, D. Environ. Sci. Technol. 2011, 45, 4832. doi: 10.1021/es1043672
(12) Huang, L.; Zhang, L.; Shao, Q.; Lu, L.; Lu, X.; Jiang, S.; Shen, W. J. Phys. Chem. C 2007, 111, 11912. doi: 10.1021/jp067226u
(13) Bonnaud, P.; Nieto-Draghi, C.; Ungerer, P. J. Phys. Chem. B 2007, 111, 3730. doi: 10.1021/jp067695w
(14) Perng, B.; Sasaki, S.; Ladanyi, B. M.; Everitt, K. F.; Skinner, J. L. Chem. Phys. Lett. 2001, 348, 491. doi: 10.1016/S0009-2614(01)01152-6
(15) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.
(16) Frenkel, D.; Berend, S. Understanding Molecular Simulation; Academic Press: London, 2002.
(17) Kowalczyk, P.; Holyst, R. Environ. Sci. Technol. 2008, 42, 2931. doi: 10.1021/es071306+
(18) Wolf, D.; Keblinski, P.; Phillpot, S. R.; Eggebrecht, J. J. Chem. Phys. 1999, 110, 8254. doi: 10.1063/1.478738
(19) Peng, X.; Cao, D.;Wang,W. Ind. Eng. Chem. Res. 2010, 49, 8787. doi: 10.1021/ie1010433
(20) Peng, X.;Wang,W.; Xue, R.; Shen, Z. AIChE J. 2006, 52, 994.
(21) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Phys. Chem. Chem. Phys. 2011, 13, 3748. doi: 10.1039/c0cp02205e
(22) Nguyen, D.; Do, D. J. Phys. Chem. B 2000, 104, 11435. doi: 10.1021/jp0007282
(23) Yang, Q.; Ma, L.; Zhong, C.; An, X.; Liu, D. J. Phys. Chem. C 2011, 115, 2790. doi: 10.1021/jp1101835
(24) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Adsorption 2007, 13, 485. doi: 10.1007/s10450-007-9051-3
(25) Song, L.; Sun, Z.; Ban, H.; Dai, M.; Rees, L. Adsorption 2005, 11, 325.
(26) Zeng, Y.; Ju, S.; Xing,W.; Chen, C. Ind. Eng. Chem. Res. 2007, 46, 242. doi: 10.1021/ie060118+
(27) Bhide, S.; Yashonath. S. J. Phys. Chem. B 2000, 104, 11977. doi: 10.1021/jp002626h

[1] Yucui HOU,Congfei YAO,Weize WU. Deep Eutectic Solvents: Green Solvents for Separation Applications[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 873-885.
[2] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[3] Wentao LI,Jiale YONG,Qing YANG,Feng CHEN,Yao FANG,Xun HOU. Oil-Water Separation Based on the Materials with Special Wettability[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 456-475.
[4] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[5] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.
[6] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[7] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[8] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[9] Jun YUAN,Ye LIU,Can ZHU,Ping SHEN,Meixiu WAN,Liuliu FENG,Yingping ZOU. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1272-1278.
[10] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[11] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[12] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[13] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[14] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[15] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1614-1620.