Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (11): 2113-2120    DOI: 10.3866/PKU.WHXB201409052
Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction
LIN Xue1, GUO Xiao-Yu2, WANG Qing-Wei2, CHANG Li-Min2, ZHAI Hong-Ju2
1. Key Laboratory of Preparation and Application Environmentally Friendly Materials, Ministry of Education, Jilin Normal University, Siping 136000, Jilin Province, P. R. China;
2. College of Chemistry, Jilin Normal University, Siping 136000, Jilin Province, P. R. China
Download:   PDF(1198KB) Export: BibTeX | EndNote (RIS)      


A Bi2MoO6/BiVO4 photocatalyst with a heterojunction structure was synthesized by a one-pot hydrothermal method. Its crystal structure and microstructure were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The FESEM and HRTEM images indicated that Bi2MoO6 nanoparticles were loaded on the surface of BiVO4 nanoplates to form a heterojunction. The ultraviolet visible (UV-Vis) diffuse reflection spectra (DRS) showed that the resulting Bi2MoO6/BiVO4 heterojunction possessed more intensive absorption within the visible light range compared with pure Bi2MoO6 and BiVO4. These excellent structural and spectral properties endowed the Bi2MoO6/BiVO4 heterojunction with enhanced photocatalytic activity. It was found that the Rhodamine B (RhB) degradation rate with Bi2MoO6/BiVO4 was higher than that with pure BiVO4 and Bi2MoO6 under visible light (λ>420 nm) by photocatalytic measurements. The enhanced photocatalytic performance of the Bi2MoO6/BiVO4 sample can be attributed to the improved separation efficiency of photogenerated hole-electron pairs generated by the heterojunction between Bi2MoO6 and BiVO4, intensive absorption within the visible light range, and high specific surface area.

Key wordsBi2MoO6/BiVO4      Composite material      Nanostructure      Photocatalytic activity     
Received: 30 June 2014      Published: 05 September 2014
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21407059, 61308095) and Science Development Project of Jilin Province, China (20130522071JH, 20130102004JC, 20140101160JC).

Corresponding Authors: LIN Xue, WANG Qing-Wei     E-mail:;
Cite this article:

LIN Xue, GUO Xiao-Yu, WANG Qing-Wei, CHANG Li-Min, ZHAI Hong-Ju. Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction. Acta Phys. Chim. Sin., 2014, 30(11): 2113-2120.

URL:     OR

(1) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123
(2) Mao, Y. B.; Wong, S. S. J. Am. Chem. Soc. 2006, 128, 8217. doi: 10.1021/ja0607483
(3) Li, B. X.; Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011, 27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报, 2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946
(4) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(5) Lu, S. Y.;Wu, D.;Wang, Q. L.; Yan, J. H.; Buekens, A. G.; Cen, K. F. Chemosphere 2011, 82, 1215. doi: 10.1016/j.chemosphere.2010.12.034
(6) Huang, C. X.; Zhu, K. R.; Qi, M. Y.; Zhuang, Y. L.; Cheng, C. J. Phys. Chem. Solids 2012, 73, 757.
(7) Hasanpour, A.; Niyaifar, M.; Mohammadpour, H.; Amighian, J. J. Phys. Chem. Solids 2012, 73, 1066. doi: 10.1016/j.jpcs.2012.04.003
(8) Lin, Y.; Geng, Z. G.; Cai, H. B.; Ma, L.; Chen, J.; Zeng, J.; Pan, N.;Wang, X. Q. Eur. J. Inorg. Chem. 2012, 28, 4439.
(9) Dai, Y. Q.; Jing, Y.; Zeng, J.; Qi, Q.;Wang, C. L.; Goldfeld, D.; Xu, C. H.; Zheng, Y. P.; Sun, Y. M. J. Mater. Chem. 2011, 21, 18174. doi: 10.1039/c1jm13641k
(10) Yan, Y.; Sun, S. F.; Song, Y.; Yan, X.; Guan,W. S.; Liu, X. L.; Shi,W. D. J. Hazard. Mater. 2013, 250-251, 106.
(11) Wang, X. K.; Li, G. C.; Ding, J.; Peng, H. R.; Chen, K. Z. Mater. Res. Bull. 2012, 47, 3814. doi: 10.1016/j.materresbull. 2012.04.082
(12) Lin, X.; Li, H. J.; Yu, L. L.; Zhao, H.; Yan, Y. S.; Liu, C. B.; Zhai, H. J. Mater. Res. Bull. 2013, 48, 4424. doi: 10.1016/j.materresbull.2013.06.075
(13) Lin, X.; Lv, P.; Guan, Q. F.; Li, H. B.; Zhai, H. J.; Liu, C. B. Appl. Surf. Sci. 2012, 258, 7146. doi: 10.1016/j.apsusc.2012.04.019
(14) Zhang, L.W.;Wang, Y. J.; Cheng, H. Y.; Yao,W. Q.; Zhu, Y. F. Adv. Mater. 2009, 21, 1286. doi: 10.1002/adma.v21:12
(15) Zhuo, Y. Q.; Huang, J. F.; Cao, L. Y.; Ouyang, H. B.;Wu, J. P. Mater. Lett. 2013, 90, 107. doi: 10.1016/j.matlet.2012.09.009
(16) Tian, G. H.; Chen, Y. J.; Meng, X. Y.; Zhou, J.; Zhou,W.; Pan, K.; Tian, C. G.; Ren, Z. Y.; Fu, H. G. ChemPlusChem 2013, 78, 117. doi: 10.1002/cplu.201200198
(17) Zhang, A. P.; Zhang, J. Z. Appl. Surf. Sci. 2010, 256, 3224. doi: 10.1016/j.apsusc.2009.12.009
(18) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue, C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b
(19) Zhang, J. Y.;Wang, Y. H.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. ACS Appl. Mater. Interfaces 2013, 5, 1031. doi: 10.1021/am302726y
(20) Yuan, B.;Wang, C. H.; Qi, Y.; Song, X. L.; Mu, K.; Guo, P.; Meng, L. T. Colloid Surface A 2013, 425, 99. doi: 10.1016/j.colsurfa.2013.02.058
(21) Ge, L.; Liu, J. Mater. Lett. 2011, 65, 1828. doi: 10.1016/j.matlet.2011.03.066
(22) Chatchai, P.; Kishioka, S. Y.; Murakami, Y.; Nosaka, A. Y.; Nosaka, Y. Electrochimica Acta 2010, 55, 592. doi: 10.1016/j.electacta.2009.09.032
(23) Zhang, X. F.; Gong, Y.; Dong, X. L.; Zhang, X. X.; Ma, C.; Shi, F. Mater. Chem. Phys. 2012, 136, 472. doi: 10.1016/j.matchemphys.2012.07.013
(24) Zhang, F. J.; Zhu, S. F.; Xie, F. Z.; Zhang, J.; Meng, Z. D. Sep. Purif. Technol. 2013, 113, 1. doi: 10.1016/j.seppur.2013.04.008
(25) Tian, Y. L.; Chang, B. B.; Lu, J. L.; Fu, J.; Xi, F. N.; Dong, X. P. ACS Appl. Mater. Interfaces 2013, 5, 7079. doi: 10.1021/am4013819
(26) Wang, S.; Yi, L. X.; Halpert, J. E.; Lai, X. Y.; Liu, Y. Y.; Cao, H. B.;Yu, R. B.;Wang, D.; Li, Y. L. Small 2012, 8, 265. doi: 10.1002/smll.v8.2
(27) Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.; Wang, D.; Jiang, L. ACS Nano 2011, 5, 590. doi: 10.1021/nn102767d
(28) Yang, N. L.; Liu, Y. Y.;Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.;Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z
(29) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892(30) Sun, Y.; Xie, Y.;Wu, C.; Long, R. Cryst. Growth Des. 2010, 10, 602. doi: 10.1021/cg900988j
(31) Shang, M.;Wang,W. Z.; Sun, S. M.; Ren, J.; Zhou, L.; Zhang, L. J. Phys. Chem. C 2009, 113, 20228. doi: 10.1021/jp9067729
(32) Wu, S. Y.; Zheng, H.; Lian, Y.W.;Wu, Y. Y. Mater. Res. Bull. 2013, 48, 2901. doi: 10.1016/j.materresbull.2013.04.041
(33) Yan, H. J.; Yang, H. X. J. Alloy. Compd. 2011, 509, L26.
(34) Xu, H.; Yan, J.; Xu, Y. G.; Song, Y. H.; Li, H. M.; Xia, J. X.; Huang, C. J.;Wan, H. L. Appl. Catal. B: Environ. 2013, 129, 182. doi: 10.1016/j.apcatb.2012.08.015
(35) Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Appl. Catal. B: Environ. 2013, 129, 255. doi: 10.1016/j.apcatb.2012.09.031
(36) Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Appl. Catal. B: Environ. 2014, 144, 885. doi: 10.1016/j.apcatb.2013.08.008
(37) Lin, X.; Yu, L. L.; Yan, L. N.; Li, H. J.; Yan, Y. S.; Liu, C. B.; Zhai, H. J. Solid State Sci. 2014, 32, 61. doi: 10.1016/j.solidstatesciences.2014.03.018
(38) Zhang, M. Y.; Shao, C. L.; Mu, J. B.; Zhang, Z. Y.; Guo, Z. C.; Zhang, P.; Liu, Y. C. CrystEngComm 2012, 14, 605. doi: 10.1039/c1ce05974b
(39) Jiang, D. L.; Chen, L. L.; Zhu, J. J.; Chen, M.; Shi,W. D.; Xie, J. M. Dalton Trans. 2013, 42, 15726. doi: 10.1039/c3dt52008k
(40) Zhang, S. Q.; Yang, Y. X.; Guo, Y. N.; Guo,W.;Wang, M.; Guo, Y. H.; Huo, M. X. J. Hazard. Mater. 2013, 261, 235. doi: 10.1016/j.jhazmat.2013.07.025

[1] LI Guang-Yong, WU Xiao-Han, HE Wei-Na, FANG Jian-Hui, ZHANG Xue-Tong. Controlled Assembly of Graphene-Based Aerogels[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2146-2158.
[2] WANG Yuan-Yuan, XU Qun-Xing, XIE Hua-Qing, WU Zi-Hua, XING Jiao-Jiao. Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2518-2522.
[3] LI Xian-Hua, ZHANG Lei-Gang, WANG Xue-Xue, YU Qing-Bo. PANI/g-C3N4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2015, 31(4): 764-770.
[4] ZU Guo-Qing, SHEN Jun, WANG Wen-Qin, ZOU Li-Ping, XU Wei-Wei, ZHANG Zhi-Hua. Preparation of Heat-Resistant, Core/Shell Nanostructured TiO2/SiO2 Composite Aerogels and Their Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2015, 31(2): 360-368.
[5] HAO Yan-Zhong, GUO Zhi-Min, SUN Bao, PEI Juan, WANG Shang-Xin, LI Ying-Pin. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2109-2116.
[6] YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1932-1938.
[7] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Phys. Chim. Sin., 2015, 31(1): 153-158.
[8] HUA Wei-Bo, ZHENG Zhuo, LI Long-Yan, GUO Xiao-Dong, LIU Heng, SHEN Chong-Heng, WU Zhen-Guo, ZHONG Ben-He, HUANG Ling. Synthesis of Nanostructured LiNi1/3Co1/3Mn1/3O2 by Ammonia-Evaporation-Induced Synthesis and Its Electrochemical Properties as a Cathode Material for a High-Power Li-Ion Battery[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1481-1486.
[9] ZHAO Wei-Rong, SHI Qiao-Meng, LIU Ying. Performance, Deactivation and Regeneration of SnO2/TiO2 Nanotube Composite Photocatalysts[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1318-1324.
[10] YIN Hai-Feng, ZHANG Hong, YUE Li. Near-Infrared Plasmon Study on N-Doped Hexagonal Graphene Nanostructures[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1049-1054.
[11] FU Ping-Feng, ZHANG Peng-Yi. Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2014, 30(5): 965-972.
[12] WANG Jing-Sheng, WANG En-Jun, YU Yan-Long, GUO Li-Mei, CAO Ya-An. Visible Light Photocatalytic Activity of an In-Doped TiO2 Thin Film with a Three-Dimensional Ordered Structure[J]. Acta Phys. Chim. Sin., 2014, 30(3): 513-519.
[13] WANG Jian-Tao, WANG Yao, HUANG Bin, YANG Juan-Yu, TAN Ao, LU Shi-Gang. Silicon Supported on Stable Si-O-C Skeleton in High-Performance Lithium-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2014, 30(2): 305-310.
[14] XU Jing, QIANG Jin-Feng, WANG Rui-Juan, NIU Wen-Jun, SHEN Ming. Controllable Preparation of Rambutan-Shape AlOOH/Al2O3 Nanomaterials with a Composite Soft Template[J]. Acta Phys. Chim. Sin., 2013, 29(10): 2286-2294.
[15] GUO Li-Mei KUANG Yuan-Jiang YANG Xiao-Dan YU Yan-Long YAO Jiang-Hong CAO Ya-An. Investigation on Photocatalytic Reduction of CO2into CH4 Using SrB2O4/SrCO3Composite Catalyst[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1558-1565.