Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (11): 2168-2176    DOI: 10.3866/PKU.WHXB201409151
BIOPHYSICAL CHEMISTRY     
Adsorption Characteristics of Bovine Serum Albumin on Cationic Grafted Particles QPDMAEMA/SiO2 with Brush Structure
SHI Nan, GAO Bao-Jiao, YANG Qing
Department of Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
Download:   PDF(1269KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Cationic grafted particles with a brush structure were prepared with micron-sized silica gel particles as a matrix via graft-polymerization and macromolecular reaction. The adsorption ability, adsorption mechanism, and adsorption thermodynamics of bovine serum albumin (BSA) on the particles were investigated in depth. The tertiary amine group-containing monomer (dimethylaminoethyl methacrylate, DMAEMA) was first allowed to polymerize on the surfaces of silica gel particles by initiating the ―NH2/S2O82- surface system, resulting in grafted PDMAEMA/SiO2 particles. Subsequently, the tertiary amine groups in the chains of the grafted PDMAEMA macromolecules were quaternized with chlorethamin reagent to obtain the functional grafted QPDMAEMA/SiO2 particles, on which the cationic polyelectrolyte QPDMAEMA macromolecules were grafted. The zeta potential of the QPDMAEMA/SiO2 particles was determined to estimate their surface electrical property. Isothermal adsorption experiments were carried out to investigate the effects of several main factors, including the pH value of the medium, ion strength, and temperature, on the adsorption performance of QPDMAEMA/SiO2 particles. Finally, the adsorption thermodynamics were investigated. The results showed that the functional grafted QPDMAEMA/SiO2 particles had much higher zeta potential than PDMAEMA/SiO2. BSA would be very strongly adsorbed on QPDMAEMA/SiO2 particles through electrostatic interactions. The adsorption capacity first increased and then decreased with increasing pH value, and it had a maximum value of 112 mg·g-1 when the pH value of the medium was equal to the isoelectric point of BSA (pI=4.7). On both sides of the isoelectric point, the effect of ion strength on the adsorption capacity was opposite. When the pH value of the medium was lower than the isoelectric point of BSA (i.e., pH<4.7), the adsorption capacity increased with increasing concentrations of electrolyte (NaCl). When the pH value of the medium was equal to the isoelectric point of BSA (i.e., pH=4.7), the adsorption capacity was almost unchanged with ion strength. The adsorption process was exothermic and during this process the entropy tended to decrease. Furthermore, this adsorption process was driven by enthalpy.



Key wordsPolyelectrolyte brush      Bovine serum albumin      Dimethylaminoethyl methacrylate      Graft-polymerization      Electrostatic interaction      Adsorption     
Received: 16 June 2014      Published: 15 September 2014
MSC2000:  O647  
Fund:  

The project was supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (2013021009-1).

Corresponding Authors: GAO Bao-Jiao     E-mail: gaobaojiao@126.com
Cite this article:

SHI Nan, GAO Bao-Jiao, YANG Qing. Adsorption Characteristics of Bovine Serum Albumin on Cationic Grafted Particles QPDMAEMA/SiO2 with Brush Structure. Acta Phys. Chim. Sin., 2014, 30(11): 2168-2176.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201409151     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I11/2168

(1) Anirudhan, T. S.; Rejeena, S. R.; Tharun, A. R. Colloids Surf. BBiointerfaces 2012, 93, 49. doi: 10.1016/j.colsurfb.2011.12.010
(2) Jin, G.; Zhang, L.; Yao, Q. Z. J. Membr. Sci. 2007, 287, 271. doi: 10.1016/j.memsci.2006.10.047
(3) Kopac, T.; Bozgeyik, K.; Yener, J. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 322, 19. doi: 10.1016/j.colsurfa.2008.02.010
(4) Yamasaki, K.; Chuang, V. T. G.; Maruyama, T.; Otagiri, M. Biochim. Biophys. Acta 2013, 1830, 5435. doi: 10.1016/j.bbagen.2013.05.005
(5) Dong, Y. S.; Zhang, F.;Wang, Z. M.; Du, L.; Hao, A. Y.; Jiang, B.; Tian, M. Y.; Li, Q.; Ji, Q. A.;Wang, S. C.; Xiu, Z. L. J. Chromatogr. A 2012, 1245, 143.
(6) Chen, Z.; He, Y.; Shi, B.; Yang, D. C. Biochim. Biophys. Acta 2013, 1830, 5515. doi: 10.1016/j.bbagen.2013.04.037
(7) Zhu, R. Y.; Xin, X.; Dai, H. Y.; Li, Q.; Lei, J. Y.; Chen, Y.; Jin, J. Protein Expr. Purif. 2012, 85, 32. doi: 10.1016/j.pep.2012.06.009
(8) Hirose, M.; Tachibana, A.; Tanabe, T. Mater. Sci. Eng. C 2010, 30, 664.(9) Li, J.; Liao, X. P.; Zhang, Q. X.; Shi, B. J. Chromatogr. B 2013, 928, 131.(10) Chen, L. H.; Zhu, G. S.; Zhang, D. L.; Zhao, H.; Guo, M. Y.; Shi,W.; Qiu, S. L. J. Mater. Chem. 2009, 19, 2013.
(11) Zhai, Z.;Wang, Y. J.; Chen, Y.; Luo, G. S. J. Sep. Sci. 2008, 31, 3527. doi: 10.1002/jssc.v31:20
(12) Wang, R.W.; Zhang, Y.; Ma, G. H.; Su, Z. G. Colloids Surf. BBiointerfaces 2006, 51, 93. doi: 10.1016/j.colsurfb.2006.05.015
(13) Marcus, R. K. J. Sep. Sci. 2008, 31, 1923.
(14) Hong, J.;Wang, Y. R.; Ye, X. H.; Zhang, Y. H. P. J. Chromatogr. B 2008, 1194, 150.
(15) Wang, S. Y.; Chen, K. M.; Kayitmazer, A. B.; Li. L.; Guo, X. H. Colloids Surf. B-Biointerfaces 2013, 107, 251. doi: 10.1016/j.colsurfb.2013.02.026
(16) Henzler, K.; Haupt, B.; Ballauff, M. Anal. Biochem. 2008, 378, 184. doi: 10.1016/j.ab.2008.04.011
(17) Wittemann, A.; Ballauff, M. Macromol. Biosci. 2005, 5, 13.
(18) Chen, K.; Zhu, Y.; Li, L.; Lu, Y.; Guo, X. Macromol. Rapid Commun. 2010, 31, 1440.
(19) Chen, K.; Zhu, Y.; Zhang, Y.; Li, L.; Lu, Y.; Guo, X. Macromolecules 2011, 44, 632. doi: 10.1021/ma102337c
(20) Ahmad, A.; Liu, X. C.; Li, L.; Guo, X. H. Adv. Chem. Eng. 2014, 44, 193. doi: 10.1016/B978-0-12-419974-3.00004-X
(21) Fang, X. L.; Gao, B. J.; Huang, X.W.; Zhang, Y. Q.; Gu, L. Y. Acta Polym. Sin. 2012, No. 12, 1472. [房晓琳, 高保娇,黄小卫, 张永奇, 顾来沅. 高分子学报, 2012, No. 12, 1472.](22) Amara, M.; Kerdjoudj, H. Talanta 2003, 60, 991. doi: 10.1016/S0039-9140(03)00155-3
(23) Yang, H.; Zheng, Q.; Cheng, R. S. Colloid Surf. A-Physicochem. Eng. Asp. 2012, 407, 1. doi: 10.1016/j.colsurfa.2012.05.031
(24) Ballauff, M.; Borisov, O. Curr. Opin. Colloid Interface Sci. 2006, 11, 316. doi: 10.1016/j.cocis.2006.12.002
(25) van der Veen, M.; Norde,W.; Stuart, M. C. Colloids Surf. BBiointerfaces 2004, 35, 33.
(26) Shamim, N.; Liang, H.; Hidajat, K.; Uddin, M. S. J. Colloid Interface Sci. 2008, 320, 15.
(27) Li,W. K.; Li, S. J. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 295, 159. doi: 10.1016/j.colsurfa.2006.08.046
(28) Peng, Z. G.; Hidajat, K.; Uddin, M. S. Colloids Surf. BBiointerfaces 2004, 35, 169. doi: 10.1016/j.colsurfb.2004.03.010
(29) Bayramo?lu, G.; Ekici, G.; Be?irli, N.; Arica, M. Y. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 310, 68. doi: 10.1016/j.colsurfa.2007.05.067
(30) Fu, H. Y.; Gao, B. J.; Niu, Q. Y. Acta Phys. -Chim. Sin. 2010, 26, 359. [付红艳, 高保娇, 牛庆媛. 物理化学学报, 2010, 26, 359.] doi: 10.3866/PKU.WHXB20100207
(31) Cestari, A. R.; Vieira, E. F. S.; Mattos, C. R. S. J. Chem. Thermodyn. 2006, 38, 1092. doi: 10.1016/j.jct.2005.11.011
(32) Anjos, F. S. C.; Vieira, E. F. S.; Cestaril, A. R. J. Colloid Interface Sci. 2002, 253, 243. doi: 10.1006/jcis.2002.8537
(33) Benhamou, A.; Basly, J. P.; Baudu, M.; Derriche, Z.; Hamacha, R. J. Colloid Interface Sci. 2013, 404, 135.

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] WANG Xiao-Wen, LI Lei, WANG Chang-Sheng. A Scheme for Rapid Simulation of Anion-π Interactions Involving Halide Anions and Substituted Benzenes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 755-762.
[8] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[9] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[10] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[11] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[12] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[13] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[14] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[15] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.