Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (11): 2121-2126    DOI: 10.3866/PKU.WHXB201409191
CATALYSIS AND SURFACE SCIENCE     
Enhanced Visible-Light Photocatalytic Activity and Stability of Nano-Sized Ag2CO3 Combined with Carbon Nanotubes
LIU Su-Qin1,2, WANG Song1, DAI Gao-Peng1,2, LU Jun1, LIU Ke2
1. Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, P. R. China;
2. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053, Hubei Province, P. R. China
Download:   PDF(1027KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nano-sized Ag2CO3 and carbon nanotube (CNT) composites were fabricated by a facile chemical precipitation approach in N,N-dimethylformamide (DMF) solvent. The as-prepared Ag2CO3/CNT samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and ultra violet-visible (UV-Vis) diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the nano-sizedAg2CO3 particles and CNTs were well combined. The Ag2CO3/CNT composite with CNT content of 1.5%(w) exhibited optimal photocatalytic activity under visible light. Ninetythree percent of the MO was removed by the Ag2CO3/CNT composite within 60 min. For the Ag2CO3/CNT composites, we found that the incorporation of CNT improved the structural stability of Ag2CO3 compared with Ag2CO3. After three cycles, 81% of the MO was decomposed by the Ag2CO3/CNT composite with CNT content of 1.5% (w), but only 59.5% of the MO could be removed by Ag2CO3. The improvements in the activity and stability are attributed to the conductive structure supported by CNTs, which favors electron-hole separation and the removal of photogenerated electrons from the decorated Ag2CO3.



Key wordsAg2CO3/CNT composite      Photocatalysis      Visible light      Stability     
Received: 17 June 2014      Published: 19 September 2014
MSC2000:  O644  
Fund:  

The project was supported by the National Natural Science Foundation of China (51378183), Natural Science Foundation of Hubei Province, China (2012FFB1903), Research Program of Hubei Province Department of Education, China (Q20132608), Science and Technology Bureau of Xiangyang, China, and Foundation of Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, China (13XKL02013).

Corresponding Authors: DAI Gao-Peng     E-mail: dgp2000@126.com
Cite this article:

LIU Su-Qin, WANG Song, DAI Gao-Peng, LU Jun, LIU Ke. Enhanced Visible-Light Photocatalytic Activity and Stability of Nano-Sized Ag2CO3 Combined with Carbon Nanotubes. Acta Phys. Chim. Sin., 2014, 30(11): 2121-2126.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201409191     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I11/2121

(1) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
(2) Chong, M. N.; Jin, B.; Chow, C.W. K.; Saint, C. Water Res. 2010, 44, 2997. doi: 10.1016/j.watres.2010.02.039
(3) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.; Yang, K. Acta Phys. -Chim. Sin. 2012, 28, 647. [余长林,操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu, J. C., 杨凯. 物理化学学报, 2012, 28, 647.] doi: 10.3866/PKU.WHXB201201051
(4) Hu, X. X.; Hu, C.; Qu, J. H. Mater. Res. Bull. 2008, 43, 2986. doi: 10.1016/j.materresbull.2007.11.022
(5) Singh, J.; Uma, S. J. Phys. Chem. C 2009, 113, 12483. doi: 10.1021/jp901729v
(6) Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Wei, J. Y.; Whangbo, M. H. Angew. Chem. Int. Edit. 2008, 47, 7931. doi: 10.1002/anie.v47:41
(7) Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.;Wang, Z. Y;Wei, J. Y.; Zhan, J.;Wang, S. Y.;Wang, J. P.; Whangbo, M. H. Chem. Eur. J. 2009, 15, 1821. doi: 10.1002/chem.v15:8
(8) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo,W. J.; Li, Z. S.; Liu, Y.; Withers, R. L. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780
(9) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 6490. doi: 10.1021/ja2002132
(10) Xu, C.W.; Liu, Y. Y.; Huang, B. B.; Li, H.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Appl. Surf. Sci. 2011, 257, 8732. doi: 10.1016/j.apsusc.2011.05.060
(11) Dong, H. J.; Chen, G.; Sun, J. X.; Li, C. M.; Yu, Y. G.; Chen, D. H. Appl. Catal. B: Environ. 2013, 134 -135, 46.
(12) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892. doi: 10.1002/adma.v26.6
(13) Dai, G. P.; Yu, J. G.; Liu, G. J. Phys. Chem. C 2012, 116, 15519. doi: 10.1021/jp305669f
(14) Xu, H.; Zhu, J. X.; Song, Y. X.; Zhao,W. K.; Xu, Y. G.; Song, Y. H.; Ji, H. Y.; Li, H. M. RSC Adv. 2014, 4, 9139. doi: 10.1039/c3ra46111d
(15) Dong, H. J.; Chen, G.; Sun, J. X.; Feng, Y. J.; Li, C. M.; Xiong, G. H.; Lv, C. D. Dalton Trans. 2014, 43, 7282. doi: 10.1039/c4dt00058g
(16) Feng, C. X.; Li, G. G.; Ren, P. H.;Wang, Y.; Huang, X. S.; Li, D. L. Appl. Catal. B: Environ. 2014, 158 -159, 224.
(17) Zhang,W. D.; Xu, B.; Jiang, L. C. J. Mater. Chem. 2010, 20, 6383. doi: 10.1039/b926341a
(18) Woan, K.; Pyrgiotakis, G.; Sigmund,W. Adv. Mater. 2009, 21, 2233. doi: 10.1002/adma.v21:21
(19) Yu, J. G.; Ma, T. T.; Liu, S.W. Phys. Chem. Chem. Phys. 2011, 13, 3491.
(20) Wang, S.; Shi, X. L.; Shao, G. Q.; Duan, X. L.; Yang, H.;Wang, T. G. J. Phys. Chem. Solids 2008, 69, 2396. doi: 10.1016/j.jpcs.2008.04.029
(21) Ma, L. L.; Sun, H. Z.; Zhang, Y. G.; Lin, Y. L.; Li, J. L.; Yu, K.; Yu, Y.; Tan, M.;Wang, J. B. Nanotechnology 2008, 19, 115709. doi: 10.1088/0957-4484/19/11/115709
(22) Xie, S. L.; Lu, X. H.; Zhai, T.; Li,W.; Yu, M. H.; Liang, C. L.; Tong, Y. X. J. Mater. Chem. 2012, 22, 14272. doi: 10.1039/c2jm32605a
(23) Xu, H.;Wang, C.; Song, Y. H.; Zhu, J. X.; Xu, Y. G.; Yan, J.; Song, Y. X.; Li, H. M. Chem. Eng. J. 2014, 241, 35. doi: 10.1016/j.cej.2013.11.065
(24) Wang, Z.; Yin, L.; Zhang, M.; Zhou, G.W.; Fei, H.; Shi, H. X.; Dai, H. J. J. Mater. Sci. 2014, 49, 1585. doi: 10.1007/s10853-013-7841-4
(25) Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. J. Mol. Catal. A: Chem. 2014, 383 -384, 128.
(26) Peng, C.; Snook, G. A.; Fray, D. J.; Shaffer, M. S. P.; Chen, G. Z. Chem. Commun. 2006, 4629.
(27) Yin, S.; Aita, Y.; Komatsu, M.;Wang, J.; Tang, Q.; Sato, T. J. Mater. Chem. 2005, 15, 674. doi: 10.1039/b413377c
(28) Xu, Y. G.; Xu, H.; Yan, J.; Li, H. M.; Huang, L. Y.; Zhang, Q.; Huang, C. J.;Wan, H. L. Phys. Chem. Chem. Phys. 2013, 15, 5821. doi: 10.1039/c3cp44104k
(29) Romanov, V.; Siu, C. K.; Verkerk, U. H.; Hopkinson, A. C.; Siu, K.W. M. J. Phys. Chem. A 2010, 114, 6964. doi: 10.1021/jp102470x
(30) Dong, P. Y.;Wang, Y. H.; Cao, B. C.; Xin, S. Y.; Guo, L. N.; Zhang, J.; Li, F. H. Appl. Catal. B: Environ. 2013, 132 -133, 45.
(31) Xiang, Q. J.; Yu, J. G. Chin. J. Catal. 2011, 32, 525. [向全军, 余家国. 催化学报, 2011, 32, 525.] doi: 10.1016/S1872-2067(10)60186-6
(32) Martis, P.; Venugopal, B. R.; Seffer, J. F.; Delhalle, J.; Mekhalif, Z. Acta Mater. 2011, 59, 5040. doi: 10.1016/j.actamat.2011.04.061
(33) Song, Y. X.; Zhu, J. X.; Xu, H.;Wang, C.; Xu, Y. G.; Ji, H. Y.; Wang, K.; Zhang, Q.; Li, H. M. J. Alloy. Compd. 2014, 592, 258. doi: 10.1016/j.jallcom.2013.12.228

[1] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[2] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1781-1788.
[3] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[4] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[5] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1453-1461.
[6] GU Jin-Yu, QI Peng-Wei, PENG Yang. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1379-1389.
[7] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[8] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[9] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[10] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[11] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[12] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[13] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[14] SHAI Xu-Xia, LI Dan, LIU Shuang-Shuang, LI Hao, WANG Ming-Kui. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2159-2170.
[15] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.