Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (11): 2055-2062    DOI: 10.3866/PKU.WHXB201409193
Hirshfeld Charge as a Quantitative Measure of Electrophilicity and Nucleophilicity: Nitrogen-Containing Systems
ZHOU Xia-Yu1, RONG Chun-Ying2, LU Tian3, LIU Shu-Bin4
1. Department of Pharmacy, Changde Vocational Technical College, Changde 415000, Hunan Province, P. R. China;
2. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research Ministry of Education of China and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China;
3. Beijing Kein Research Center for Natural Sciences, Beijing 100022, P. R. China;
4. Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, U.S.A.
Download:   PDF(800KB) Export: BibTeX | EndNote (RIS)      


To accurately predict the capability and possible reaction site for atoms in molecules to donate or accept electrons in chemical processes, i.e., to quantitatively determine electrophilicity, nucleophilicity, and regioselectivity, is an important yet incomplete task. Earlier, we proposed using the Hirshfeld charge and information gain as two equivalent descriptors for this purpose, based on the Information Conservation Principle we recently proposed. This idea was successfully applied to two series of molecular systems to confirm its validity. However, our previous work is hindered by the fact that the involved element is carbon. It is unclear if stockit applies to other elements and to different valence states of the same element. In this study, to address these issues, the method was applied to nitrogen-containing systems. Five different categories of compounds were studied, including benzenediazonium, azodicarboxylate, diazo, and primary and secondary amines, with a total of 40 molecules. The results show that there are strong linear correlations between the Hirshfeld charge and their experimental scales of electrophilicity and nucleophilicity. However, these correlations depend on the valence state and bonding environment of the nitrogen element. The linear relationship only holds within the same category. Possible reasons for this observation are discussed.

Key wordsHirshfeld charge      Information gain      Electrophilicity      Nucleophilicity      Regioselectivity     
Received: 07 August 2014      Published: 19 September 2014
MSC2000:  O641  

The project was supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China (Xiang Tong Jiao [2012]318), Hunan Provincial Natural Science Foundation, China (12JJ2029), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China (12K030), Scientific Research Fund of Changde Municipal Science and Technology Bureau, Hunan Province, China (2014JF15), and Provincial Science and Technology Project, China (2013FJ4220).

Corresponding Authors: RONG Chun-Ying, LIU Shu-Bin     E-mail:;
Cite this article:

ZHOU Xia-Yu, RONG Chun-Ying, LU Tian, LIU Shu-Bin. Hirshfeld Charge as a Quantitative Measure of Electrophilicity and Nucleophilicity: Nitrogen-Containing Systems. Acta Phys. Chim. Sin., 2014, 30(11): 2055-2062.

URL:     OR

(1) March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure;Wiley: New York, USA, 1985.
(2) Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 141. doi: 10.1021/ja01097a041
(3) Ritchie, C. D. Accounts Chem. Res. 1972, 5, 348. doi: 10.1021/ar50058a005
(4) Mayr, H.; Patz, M. Angew. Chem. Int. Edit. 1994, 33, 938.
(5) Parr, R. G.; Yang,W. Density-Functional Theory of Atoms and Molecules. In International Series of Monographs on Chemistry; Clarendon Press: Oxford, England, 1989.
(6) Geerlings, P.; DeProft, F.; Langenaeker,W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
(7) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f
(8) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(9) Parr, R. G.; Yang,W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036
(10) Parr, R. G.; von Szentpaly, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x
(11) Jaramillo, P.; Perez, P.; Contreras, R.; Tiznado,W.; Fuentealba, P. J. Phys. Chem. A 2006, 110, 8181. doi: 10.1021/jp057351q
(12) Ayers, P.W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys. Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/b500996k
(13) Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a
(14) Ayers, P.W.; Morell, C.; De Proft, D.; Geerlings, P. Chem. Eur. J. 2007, 13, 8240.
(15) Liu, S. B.; Ess, D. H.; Schauer, C. K. J. Phys. Chem. A 2011, 115, 4738. doi: 10.1021/jp112319d
(16) Kumar, N.; Liu, S. B.; Kozlowski, P. M. J. Phys. Chem. Lett. 2012, 3, 1035.
(17) Markownikoff,W. Ann. Pharm. (Lemgo, Ger.) 1870, 153, 228.
(18) Baldwin, J. E. J. Chem. Soc. Chem. Commun. 1976, 1976, 734.
(19) Fürst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32, 275.
(20) Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702
(21) Hirshfeld, F. Theor. Chim. Acc. 1977, 44, 129. doi: 10.1007/BF00549096
(22) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3
(23) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
(24) Kullback, S.; Leibler, R.A. Ann. Math. Stat. 1951, 22, 79.
(25) Bader, R. F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, England, 1990.
(26) Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969
(27) Lu, T.; Chen, F.WActa Phys. -Chim. Sin. 2012, 28, 1. [卢天, 陈正武. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.WHXB2012281
(28) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879
(29) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q
(30) Parr, R. G.; Ayers, P.W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
(31) Ayers, P.W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5
(32) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y
(33) Lucius, R.; Loos, R.; Mayr, H. Angew. Chem. Int. Edit. 2002, 41, 91. doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5
(34) Mayr, H.; Kempf, B.; Ofial, A. R. Accounts Chem. Res. 2003, 36, 66. doi: 10.1021/ar020094c
(35) (a) Pérez, P. J. Org. Chem. 2003, 68, 5886.(b) Mayr, H.; Hartnagel, M.; Grimm, K. Liebigs Ann. /Recl.1997, 55.
(36) Kanzian, T.; Mayr, H. Chem. Eur. J. 2010, 16, 11670. doi: 10.1002/chem.v16:38
(37) Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. Eur. J. 2003, 9, 4068.
(38) Brotzel, F.; Chu, Y. C.; Mayr, H. J. Org. Chem. 2007, 72, 3679. doi: 10.1021/jo062586z
(39) Ditchfield, R.; Hehre,W. J.; Pople, J. J. Chem. Phys. 1971, 54, 724. doi: 10.1063/1.1674902
(40) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
(41) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT, 2009.
(42) Cossi, M.; Rega, N.; Scalmani, G.; Baronem, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189
(43) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
(44) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
(45) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
(46) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r
(47) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124
(48) Huang, Y.; Liu, L.; Liu,W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p
(49) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114, 5913. doi: 10.1021/jp101329f
(50) Huang, Y.; Zhong, A. G.; Yang, Q. S.; Liu, S. B. J. Chem. Phys. 2011, 134, 084103. doi: 10.1063/1.3555760

[1] LIU Shu-Bin. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Phys. Chim. Sin., 2016, 32(1): 98-118.
[2] ZENG Xiao-Lan, WANG Yan. Mechanism and Regioselectivity of Addition Reactions of CH3OH to Germasilenes[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1699-1707.
[3] ZHAO Yi, LIU Yong-Jun, ZHUO Shu-Ping. Reaction Mechanism and Regioselectivity of Cu(I)-Catalyzed Hydrocarboxylation of 1-Phenyl-propyne with Carbon Dioxide[J]. Acta Phys. Chim. Sin., 2015, 31(2): 237-244.
[4] ZHAO Yi, ZHOU Jin, LIU Hui, ZHUO Shu-Ping. Reaction Mechanism and the Regioselectivity of Cu-Catalyzed Silacarboxylation of Internal Alkynes: a Density Functional Theory Study[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1864-1871.
[5] LIU Shu-Bin. Conceptual Density Functional Theory and Some Recent Developments[J]. Acta Phys. Chim. Sin., 2009, 25(03): 590-600.
[6] LIANG Yun-Xiao, SHANG Zhen-Feng, XU Xiu-Fang, ZHAO Xue-Zhuang. Regioselectivity of 1,3-Butadiene Diels-Alder Cycloaddition to C59XH(X=N, B)[J]. Acta Phys. Chim. Sin., 2008, 24(10): 1811-1816.