Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (12): 2256-2262    DOI: 10.3866/PKU.WHXB201409302
SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors
CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying
Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
Download:   PDF(1133KB) Export: BibTeX | EndNote (RIS)      


Electrochemical exfoliation of graphite rods under the action of an electric field force led to the formation of two-dimensional (2D) graphite nanosheet arrays (GNSAs) perpendicular to the surface of the graphite substrate and parallel to each other in arrangement. Subsequently, SnO2/graphite nanosheet array (SnO2/GNSA) composite electrodes were prepared by the cathodic reduction electrodeposition method. The morphology, composition, and microstructure of the samples were characterized using field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy, respectively. Electrochemical measurements showed that the composite electrodes achieved specific capacitance values as high as 4105 F·m-2 in the potential window up to 1.4 V with a scan rate of 5 mV·s-1 in 0.5 mol·L-1 LiNO3 solution. Asymmetric supercapacitor fabricated with the as-prepared SnO2/GNSAs exhibited excellent capacitive performance with energy density of 0.41 Wh·m-2 in the potential window up to 1.8 V and retention of 81% after 5000 cycles.

Key wordsSupercapacitor      Graphite nanosheet array      SnO2      Composite electrode      Electrochemical performance     
Received: 09 June 2014      Published: 30 September 2014
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20963009, 21163017) and Specialized Research Fund for the Doctoral Program of Higher Education, China (20126203110001).

Corresponding Authors: HU Zhong-Ai     E-mail:
Cite this article:

CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying. SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors. Acta Phys. Chim. Sin., 2014, 30(12): 2256-2262.

URL:     OR

(1) Jayalakshmi, M.; Balasubramanian, K. Int. J. Electrochem. Sci. 2008, 3, 1196.
(2) Lang, X. Y.; Yuan, H. T.; Iwasa, Y.; Chen, M.W. Scripta Mater. 2011, 64, 923. doi: 10.1016/j.scriptamat.2011.01.038
(3) Jayalakshmi, M.; Venugopal, N.; Raja, K. P.; Rao, M. M. J. Power Sources 2006, 158, 1538. doi: 10.1016/j.jpowsour.2005.10.091
(4) Barbieri, O.; Hahn, M.; Herzog, A.; Kotz, R. Carbon 2005, 43, 1303. doi: 10.1016/j.carbon.2005.01.001
(5) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11. doi: 10.1016/j.jpowsour.2006.02.065
(6) Liu, X. M.; Zhang, X. G. Electrochim. Acta 2004, 49, 229. doi: 10.1016/j.electacta.2003.08.005
(7) Wu, M. Q.; Zhang, L. P.;Wang, D. M.; Chao, X.; Zhang, S. R. J. Power Sources 2008, 175, 669. doi: 10.1016/j.jpowsour.2007.09.062
(8) Li, L.; Hu, Z. A.; Yang, Y. Y.;Wu, H. Y.; Cui, L. J. Acta Phys. -Chim. Sin. 2014, 30, 899. [李丽, 胡中爱, 杨玉英, 吴红英, 崔璐娟. 物理化学学报, 2014, 30, 899.] doi: 10.3866/PKU.WHXB201403261
(9) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29, 1681.] doi: 10.3866/PKU.WHXB201305223
(10) Zhou, C.; Zhang, Y.W.; Li, Y. Y.; Liu, J. P. Nano Letters 2013, 13, 2078. doi: 10.1021/nl400378j
(11) Wang, H.W.; Xu, Z. J.; Yi, H.;Wei, H. G.; Guo, Z. H.;Wang, X. F. Nano Energy 2014, 7, 86. doi: 10.1016/j.nanoen.2014.04.009
(12) Jiang, Y. Z.; Yuan, T. Z.; Sun,W. P.; Yan, M. ACS Appl. Mater. Interfaces 2012, 4, 6126.
(13) Jin, Y. H.; Min, K. M.; Seo, S. D.; Shim, H.W.; Kim, D.W. J. Phys. Chem. C 2011, 115, 22062. doi: 10.1021/jp208021w
(14) Wang, H. K.; Rogach, A. L. Chem. Mater. 2014, 26, 123. doi: 10.1021/cm4018248
(15) Wu, P.; Du, N.; Zhang, H.; Zhai, C. X.; Yang, D. R. ACS Appl. Mater. Interfaces 2011, 3, 1946. doi: 10.1021/am200168w
(16) Wang, J. H.; Li, B.;Wu, H. Y.; Guo, Y. Z. Acta Phys. -Chim. Sin. 2008, 24, 681. [王剑华, 李斌, 吴海燕, 郭玉忠. 物理化学学报, 2008, 24, 681.] doi: 10.3866/PKU.WHXB20080423
(17) Deosarkar, P.; Pawar, S. M.; Sonawane, S. H.; Bhanvase, B. A. Chem. Eng. Process 2013, 70, 48. doi: 10.1016/j. cep.2013.05.008
(18) Lim, A. H.; Shim, H.W.; Seo, S. D.; Lee, G. H.; Park, K. S.; Kim, D.W. Nanoscale 2012, 4, 4694. doi: 10.1039/c2nr31056b
(19) Li, Z. J.; Chang, T. X.; Yun, G. Q.; Jia, Y. Powder Technol. 2012, 224, 306. doi: 10.1016/j.powtec.2012.03.012
(20) Pang, X.; Ma, Z. Q.; Zuo, L. Acta Phys. -Chim. Sin. 2009, 25, 2433. [庞旭, 马正青, 左列. 物理化学学报, 2009, 25, 2433.] doi: 10.3866/PKU.WHXB20091211
(21) Lim, S. P.; Huang, N. M.; Lim, H. N. Ceram. Int. 2013, 39, 6647. doi: 10.1016/j.ceramint.2013.01.102
(22) Liu, B. N.; Luo, F.;Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518.
(23) Lee, S. H.; Seo, S. D.; Jin, Y. H. Shim, H.W.; Kim, D.W. Electrochem. Commun. 2010, 12, 1419. doi: 10.1016/j. elecom.2010.07.036
(24) Chen, J.; Li, C.; Shi, G. Q. J. Phys. Chem. Lett. 2013, 4, 1244. doi: 10.1021/jz400160k
(25) Yu, Z. J.;Wang, Y. L.; Deng, H. G.; Zhan, L.; Yang, G. Z.; Yang, J. H.; Ling, L. C. J. Inorg. Mater. 2013, 28, 515. [虞祯君, 王艳莉, 邓洪贵, 詹亮, 杨光智, 杨俊和, 凌立成. 无机材料学报, 2013, 28, 515.] doi: 10.3724/SP.J.1077.2013.12374
(26) Wang, D. N.; Li, X. F.;Wang, J. X.; Yang, J. L.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. J. Phys. Chem. C 2012, 116, 22149. doi: 10.1021/jp306041y
(27) Raki, R. B.; Cha, D. K.; Chen,W.; Alshareef, H. N. J. Phys. Chem. C 2011, 115, 14392. doi: 10.1021/jp202519e
(28) Kandalkar, S. G.; Gunjakar, J. K.; Lokhande, C. D. Appl. Surf. Sci. 2008, 254, 5540.
(29) Pusawall, S. N.; Deshmukh, P. R.; Lokhande, C. D. Bull. Mater. Sci. 2011, 34, 1179. doi: 10.1007/s12034-011-0168-3
(30) Tang, P. Y.; Zhao, Y. Q.;Wang, Y. M.; Xu, C. L. Nanoscale 2013, 5, 8156. doi: 10.1039/c3nr02119j
(31) Pang, S. C.; Anderdson, M. A.; Chapman, T.W. Electrochem. Soc. 2000, 147, 444. doi: 10.1149/1.1393216
(32) Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Adv. Mater. 2012, 24, 4569. doi: 10.1002/adma.v24.33

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[4] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[5] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[6] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[7] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[8] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[9] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[10] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[11] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1593-1603.
[12] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.
[13] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[15] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.