Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (12): 2283-2290    DOI: 10.3866/PKU.WHXB201410132
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries
WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan
State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
Download:   PDF(1176KB) Export: BibTeX | EndNote (RIS)      

Abstract  

An Mg(Ⅱ) and Ti(Ⅳ), iso-molar, co-doped cathode material LiMn1.9Mg0.05Ti0.05O4 for lithium-ion batteries was successfully synthesized via a sol-gel method, using lithium hydroxide, manganese acetate, magnesium nitrate, and butyl titanate as raw materials, and citric acid as a chelating agent. The as-prepared materials were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical tests (including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements). The results demonstrated that the cathode material LiMn1.9Mg0.05Ti0.05O4, which was obtained after calcination at 780℃ for 12 h, exhibited a fine microstructure and good electrochemical performance. When cycled at 4.35-3.30 V at room temperature, LiMn1.9Mg0.05Ti0.05O4 delivered a discharge specific capacity of 126.8 mAh·g-1 at 0.5C rate, and maintained a capacity of 118.5 mAh·g-1 after 50 cycles; the capacity retention of this material reached 93.5%. This material showed a discharge-specific capacity of 111.9 mAh·g-1 at 0.5C rate after 30 cycles, when it was cycled at 55℃; under these conditions the capacity retention reached 91.9%, far superior to the capacity retention of undoped LiMn2O4. The iso-molar co-doping of LiMn2O4 with Mg(Ⅱ) and Ti(Ⅳ) ions led to significant modification of the electronic and ionic conductivity, and increased the rate properties and electrochemical performance of the spinel lithium manganate at elevated temperatures.



Key wordsLithium ion battery      Cathode material      Spinel lithium manganate      Sol-gel method      Mg, Ti co-doping     
Received: 09 July 2014      Published: 13 October 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21071026) and Outstanding Talents Introduction Project of University of Electronic Science and Technology of China (08JC00303).

Corresponding Authors: LIU Xing-Quan     E-mail: lxquan@uestc.edu.cn
Cite this article:

WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2014, 30(12): 2283-2290.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201410132     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I12/2283

(1) Wang, Z. P.; Sun, F. C. Transaction of Beijing Institute of Technology 2004, 24 (12), 1053. [王震坡, 孙逢春. 北京理工大学学报, 2004, 24 (12), 1053.]
(2) Dunn, B.; Kamath, H.; Tarascon, J. Science 2011, 334 (6058), 928. doi: 10.1126/science.1212741
(3) Saft, M.; Chagnon, G.; Faugeras, T.; Sarre, G.; Morhet, P. J. Power Sources 1999, 80 (1-2), 180.
(4) Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644
(5) Mukherjee, R.; Krishnan, R.; Lu, T. M.; Koratkar, N. Nano Energy 2012, 1 (4), 518. doi: 10.1016/j.nanoen.2012.04.001
(6) Park, O. K.; Cho, Y.; Lee, S.; Yoo, H.; Song, H.; Cho, J. Energy Environ. Sci. 2011, 4 (5), 1621. doi: 10.1039/c0ee00559b
(7) Patey, T. J.; Büchel, R.; Ng, S. H.; Krumeich, F.; Pratsinis, S. E.; Novák. P. J. Power Sources 2009, 189, 149. doi: 10.1016/j.jpowsour.2008.10.002
(8) Shi, Z. C.; Li, C.; Yang, Y. Electrochemistry 2003, 9 (1), 9. [施志聪, 李晨, 杨勇. 电化学, 2003, 9 (1), 9.]
(9) Fedorkorva, A.; Nacher-Alejos, A.; Gomez-Romero, P. Electrochim. Acta 2010, 55, 943. doi: 10.1016/j.electacta.2009.09.060
(10) Yi, T. F.; Yue, C. B.; Zhu, Y. R.; Zhu, R. S.; Hu, X. G. Rare Metal Materials and Engineering 2009, 38 (9), 1687. [伊廷锋, 岳彩波, 朱彦荣, 诸荣孙, 胡信国. 稀有金属材料与工程, 2009, 38 (9), 1687.]
(11) Wang, Z. X.; Xing, Z. J.; Li, X. H.; Guo, H. J.; Peng,W. J. Acta Phys. -Chim. Sin. 2004, 20 (8), 790. [王志兴, 邢志军, 李新海, 郭华军, 彭文杰. 物理化学学报, 2004, 20 (8), 790.] doi: 10.3866/PKU.WHXB20040802
(12) Xu, C. Q.; Tian, Y.W.; Zhai, Y. C. Journal of Materials and Metallurgy 2002, 1 (4), 243. [徐茶青, 田彦文, 翟玉春. 材料与冶金学报, 2002, 1 (4), 243.]
(13) Amatucci, M.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149 (12), K31.
(14) Amatucci, G. G.; Pereira, N.; Zheng, T.; Tarascon, J. M. J. Electrochem. Soc. 2001, 148 (2), A171.
(15) Hong, Y. S.; Han, C. H.; Kim, K.; Kwon, C.W.; Campet, G.; Choy, J. H. Solid State Ionics 2001, 139 (1-2), 75. doi: 10.1016/S0167-2738(00)00821-3
(16) Fey, G. T. K.; Lu, C. Z.; Kumar, T. P. J. Power Sources 2003, 115, 332. doi: 10.1016/S0378-7753(03)00010-7
(17) Liu, Q. S.; Yu, L. H.;Wang, H. H. J. Alloy. Compd. 2009, 486, 886. doi: 10.1016/j.jallcom.2009.07.087
(18) Kou, D.; Liu, X. Q.; Zhang, Z.; Liu, H. J.;Wang, C. Science & Technology in Chemical Industry 2012, 20 (6), 1. [寇丹, 刘兴泉, 张峥, 刘宏基, 王超. 化工科技, 2012, 20 (6), 1.]
(19) Kang, K.; Dai, S. H.;Wan, Y. H. J. Funct. Mater. 2000, 31 (3), 283. [康慨, 戴受惠, 万玉华. 功能材料, 2000, 31 (3), 283.]
(20) Du, R. B.; Liu, T.; Kong, X. J. Chin. J. Rare Metals 2009, 33 (4), 553. [杜荣斌, 刘涛, 孔学军. 稀有金属, 2009, 33 (4), 553.]
(21) Wang, Y. M.; Bao, F. Y.; Hou, X. G.; Zhou, J. China Powder Science and Technology 2009, 15 (4), 49. [王玉棉, 包飞燕, 侯新刚, 邹杰. 中国粉体技术, 2009, 15 (4), 49.]
(22) Liu, X. M.; Huang, Z. D.; Oh, S.; Ma, P. C. J. Power Sources 2010, 195 (13), 4290. doi: 10.1016/j.jpowsour.2010.01.068
(23) Michalska, M.; Lipinska, L.; Mirkowska, M.; Aksieniongek, M.; Diduszko, R.;Wasiucionek, M. Solid State Ionics 2011, 188 (1), 160. doi: 10.1016/j.ssi.2010.12.003
(24) Chen, K.; Donahoe, A. C.; Noh, Y. D.; Li, K.; Komarneni, S.; Xue, D. Ceram. Int. 2014, 40 (2), 3155. doi: 10.1016/j.ceramint.2013.09.128
(25) Son, J. T.; Kim, H. G.; Park, Y. Electrochim. Acta 2004, 50, 453.
(26) Shen, P.; Huang, Y.; Liu, L.; Jia, D. J. Solid State Electr. 2006, 10 (11), 929. doi: 10.1007/s10008-005-0039-1
(27) Prabu, M.; Reddy, M. V.; Selvasekarapandian, S.; Subba Rao, G. V.; Chowdari, B. V. R. Electrochim. Acta 2013, 88, 745. doi: 10.1016/j.electacta.2012.10.011
(28) Lee, D. K.; Han, S. C.; Ahn, D.; Singh, S. P.; Sohn, K. S.; Pyo, M. ACS Appl. Mater. Inter. 2012, 4 (12), 6841.
(29) Hu, G. J.; Ouyang, C. Y. Acta Phys. Sin. 2010, 59 (8), 5864. [胡国进, 欧阳楚英. 物理学报, 2010, 59 (8), 5864.]
(30) Huang, B.; Li, X.;Wang, Z.; Guo, H.; Xiong, X.;Wang, J. J. Alloy. Compd. 2014, 583, 313. doi: 10.1016/j.jallcom.2013.08.157
(31) Wang, Z. P.; Liu,W.;Wang, Y.; Zhao, C. S.; Zhang, S. P.; Chen, J. T.; Zhou, H. H.; Zhang, X. X. Acta Phys. -Chim. Sin. 2012, 28 (9), 2084. [王震坡, 刘文, 王悦, 赵春松, 张淑萍, 陈继涛, 周恒辉, 张新祥. 物理化学学报, 2012, 28 (9), 2084.] doi: 10.3866/PKU.WHXB201207043
(32) Xiao, L.; Guo, Y.; Qu, D.; Deng, B.; Liu, H.; Tang, D. J. Power Sources 2013, 225, 286. doi: 10.1016/j.jpowsour.2012.10.070
(33) Singh, S.; Mitra, S. Electrochim. Acta 2014, 123, 378. doi: 10.1016/j.electacta.2014.01.045
(34) Ohzuku, T.; Kitagawa, M.; Hirai, T. J. Electrochem. Soc. 1990, 137 (3), 769. doi: 10.1149/1.2086552
(35) Zhuang, Q. C.;Wei, T.;Wei, G. Z.; Dong, Q. F.; Sun, S. G. Acta Chim. Sin. 2009, 67 (19), 2184. [庄全超, 魏涛, 魏国祯,董全峰, 孙世刚. 化学学报, 2009, 67 (19), 2184.]
(36) Xia, Y. Y.; Sakai, T.; Fujieda, T.; Yang, X. Q. J. Electrochem. Soc. 2001, 148 (7), A723.
(37) Xiong, L.; Xu, Y.; Tao, T.; Goodenough, J. B. J. Power Sources 2012, 199, 214. doi: 10.1016/j.jpowsour.2011.09.062

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[3] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2261-2267.
[4] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2293-2300.
[5] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[6] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[7] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[8] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[9] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.
[10] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[11] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[12] WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Phys. Chim. Sin., 2016, 32(2): 536-542.
[13] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Sin., 2016, 32(2): 573-580.
[14] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2737-2744.
[15] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1513-1520.