Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (12): 2263-2271    DOI: 10.3866/PKU.WHXB201410141
ELECTROCHEMISTRY AND NEW ENERGY     
Functionalized Graphene/Activated Carbon Composite Electrodes for Asymmetric Capacitive Deionization
LU Miao1, LIU Jian-Yun1, CHENG Jian1, WANG Shi-Ping1, YANG Jian-Mao2
1. State Enviromental Protection Engineering Center for Pollution Treament and Control in Textile Industry, School of Environmental Science and Engineering, Donghua University, Shanghai 201620, P. R. China;
2. Analysis and Test Center, Donghua University, Shanghai 201620, P. R. China
Download:   PDF(1324KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Aminated graphene (GP-NH2) was fabricated via the modification of graphite oxide (GO) with 3-aminopropyltriethoxysilane (AMPTS), and the covalent grafting of the amine functional groups was confirmed using Fourier transform infrared (FTIR) spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The aminated graphene (GP-NH2)/activated carbon (AC) composite electrode (GP-NH2/AC) was prepared, using the GP-NH2 as an additive. An AC||GP-NH2/AC asymmetric capacitor for capacitor deionization was then assembled using the GP-NH2/AC electrode as the positive electrode and AC as the negative electrode. A salt removal of 7.63 mg·g-1 was achieved using the AC||GP-NH2/AC capacitor, and current efficiency was increased to 77.6%. AGP-SO3H/AC electrode was then prepared by mixing AC with sulfonated GP. With GP-NH2/AC as the positive electrode, and GP-SO3H/AC as the negative electrode, a GP-SO3H/AC||GP-NH2/AC asymmetric capacitor was assembled for capacitive deionization. An average desalting rate of 0.99 mg·g-1·min-1 was achieved, almost five times higher than that achieved using an AC||AC symmetric capacitor. The chargedischarge rate showed a 30% increase. The existence of the intrinsic charge on the electrode surface greatly inhibited the migration of counter ions, so that the current efficiency was significantly enhanced (to 92.8%) in comparison with the value achieved using an AC||AC capacitor (40%). These results demonstrated that the functionalized graphene in the AC electrode not only enhanced the conductivity, but also controlled the selective adsorption of ions, thereby significantly improving the deionization performance.



Key wordsAminated graphene      Sulfonated graphene      Asymmetric capacitor      Capacitive deionization     
Received: 23 June 2014      Published: 14 October 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21476047, 21105009), Foundation of State Key Laboratory of Electroanalytical Chemistry, China (SKLEAC201205), and Fundamental Research Funds for the Central Universities, China (2232012A3-05).

Corresponding Authors: LIU Jian-Yun     E-mail: jianyun.liu@dhu.edu.cn
Cite this article:

LU Miao, LIU Jian-Yun, CHENG Jian, WANG Shi-Ping, YANG Jian-Mao. Functionalized Graphene/Activated Carbon Composite Electrodes for Asymmetric Capacitive Deionization. Acta Phys. Chim. Sin., 2014, 30(12): 2263-2271.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201410141     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I12/2263

(1) Sheikholeslami, R. Desalination 2009, 248, 218. doi: 10.1016/j.desal.2008.05.058
(2) Porada, S.; Zhao, R.; Van DerWal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater. Sci. 2013, 58, 1388. doi: 10.1016/j.pmatsci.2013.03.005
(3) Xu, P.; Drewes, J. E.; Kim, T. U.; Bellona, C.; Amy, G. J. Membrane. Sci. 2006, 279, 165. doi: 10.1016/j.memsci.2005.12.001
(4) Sharifi, M.; Zebarth, B. J.; Burton, D. L.; Grant, C. A.; Hajabbasi, M. A.; Abbassi-Kalo, G. Commun. Soil Sci. Plan. 2009, 40, 2505. doi: 10.1080/00103620903111376
(5) Welgemoed, T. J.; Schutte, C. F. Desalination 2005, 183, 327. doi: 10.1016/j.desal.2005.02.054
(6) Zou, L.; Morris, G.; Qi, D. Desalination 2008, 225, 329. doi: 10.1016/j.desal.2007.07.014
(7) Pekala, R.W.; Farmer, J. C. Alviso, C. T.; Tran, T. D.; Mayer, S. T.; Miller, J. M.; Dunn, B. J. Non-Cryst. Solids 1998, 22, 74.
(8) Wang, X.W.; Jiang, F. T.; Suo, Q. L.; Fang, Y. Z.; Lu, Y. Acta Phys. -Chim. Sin. 2011, 27, 2605. [王喜文, 姜芳婷, 索全伶, 方玉珠, 路勇. 物理化学学报, 2011, 27, 2605.] doi: 10.3866/PKU.WHXB20111116
(9) Liu, J. Y.;Wang, S. P.; Yang, J. M.; Liao, J. J.; Lu, M.; Pan, H. J.; An, L. Desalination 2014, 344, 446. doi: 10.1016/j.desal.2014.04.015
(10) Suss, M. E.; Baumann, T. F.; Bourcier,W. L.; Spadaccini, C. M.; Rose, K. A.; Santiago, J. G.; Stadermann, M. Energ. Environ. Sci. 2012, 5, 9511. doi: 10.1039/c2ee21498a
(11) Porada, S.; Sales, B. B.; Hamelers, H. V. M.; Biesheuvel, P. M. J. Phys. Chem. Lett. 2012, 3, 1613. doi: 10.1021/jz3005514
(12) Oren, Y.; Soffer, A. J. Appl. Electrochem. 1983, 13, 489. doi: 10.1007/BF00617523
(13) Anderson, M. A.; Cudero, A. L.; Palma, J. Electrochim. Acta 2010, 55, 3845. doi: 10.1016/j.electacta.2010.02.012
(14) Cohen, I.; Avraham, E.; Noked, M.; Soffer, A.; Aurbach, D. J. Phys. Chem. C. 2011, 115, 19856. doi: 10.1021/jp206956a
(15) Lee, J. B.; Park, K. K.; Eum, H. M.; Lee, C.W. Desalination 2006, 196, 125. doi: 10.1016/j.desal.2006.01.011
(16) Biesheuvel, P. M.; Zhao, R.; Porada, S.; Van derWal, A. J. Colloid Interface Sci. 2011, 360, 239. doi: 10.1016/j.jcis.2011.04.049
(17) Li, H.; Zou, L. Desalination 2011, 275, 62. doi: 10.1016/j.desal.2011.02.027
(18) Wan,W. B.; Zhao, Z. B.; Hu, H.; Zhou, Q.; Fan, Y. R.; Qiu, J. S. New Carbon Mater. 2011, 26, 16. [万武波, 赵宗彬, 胡涵, 周泉, 范彦如, 邱介山. 新型炭材料, 2011, 26, 16.]
(19) Wen, X. R.; Zhang, D. S.; Yan, T. T.; Zhang, J. P.; Shi, L. Y. J. Mater. Chem. A 2013, 39, 12334.
(20) Wang, H.; Zhang, D. S.; Yan, T. T.;Wen, X. R.; Shi, L. Y.; Zhang, J. P. J. Mater. Chem. 2012, 22, 23745. doi: 10.1039/c2jm35340g
(21) Zhang, D. S.; Yan, T. T.; Shi, L. Y.; Peng, Z.;Wen, X. R.; Zhang, J. P. J. Mater. Chem. 2012, 22, 14696. doi: 10.1039/c2jm31393f
(22) Wang, H.; Shi, L. Y.; Yan, T. T.; Zhang, J. P.; Zhong, Q. D.; Zhang, D. S. J. Mater. Chem. A 2014, 2, 4739.
(23) Lu, M.; Liu, J. Y.;Wang, S. P.; Cheng, J. Chem. J. Chin. Univ. 2014, 35 (7), 1546. [卢淼, 刘建允, 王世平, 程健. 高等学校化学学报, 2014, 35 (7), 1546.]
(24) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 339.
(25) Xu, Y. X.; Bai, H.; Lu, G.W. J. Am. Chem. Soc. 2008, 130, 5856. doi: 10.1021/ja800745y
(26) Si, Y.; Samulski, E.T. Nano Lett. 2008, 8, 1679. doi: 10.1021/nl080604h
(27) Stankovich, S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2006, 44, 3342. doi: 10.1016/j.carbon.2006.06.004
(28) Yang, J.; Zou, L.; Choudhury, N. R. Electrochim. Acta 2013, 91, 11. doi: 10.1016/j.electacta.2012.12.089
(29) Kumar, M.; Singh, K.; Dhawan, S. K.; Tharanikkarasu, K.; Chung, J. S.; Kong, B. S.; Hur, S. H. Chem. Eng. J. 2013, 231, 397. doi: 10.1016/j.cej.2013.07.043
(30) Fang, F.; Kong, L.; Huang, J.;Wu, S.; Zhang, K.;Wang, X.; Liu, J. J. Hazard. Mater. 2014, 270, 1. doi: 10.1016/j.jhazmat.2014.01.031
(31) Hari, S.; Goossens, A. M.; Vandersypen, L. M. K.; Hagen, C.W. Microelectron. Eng. 2014, 121, 122. doi: 10.1016/j.mee.2014.04.037
(32) Liu, C. P.; Chang, M.W.; Chuang, C. L. Curr. Appl. Phys. 2014, 14, 653. doi: 10.1016/j.cap.2014.02.017
(33) Huang,W.; Ouyang, X.; Lee, L. J. ACS Nano 2012, 6, 10178. doi: 10.1021/nn303917p
(34) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R. Nano lett. 2008, 8, 36. doi: 10.1021/nl071822y

[1] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[2] WANG Xi-Wen, JIANG Fang-Ting, SUO Quan-Ling, FANG Yu-Zhu, LU Yong. Self-supporting Macroscopic Carbon/Ni-Fiber Hybrid Electrodes Prepared by Catalytic Chemical Vapor Deposition Using Various Carbonaceous Compounds and Their Capacitive Deionization Performance[J]. Acta Phys. Chim. Sin., 2011, 27(11): 2605-2612.