Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (1): 56-66    DOI: 10.3866/PKU.WHXB201411052
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Reaction Mechanism of Methylation of 4-Methylbiphenyl with Methanol over H-ZSM-5 Zeolite
LI Ling-Ling1,2, JANIK J. Michael2,3,4, NIE Xiao-Wa5, SONG Chun-Shan2,3,4, GUO Xin-Wen2
1. Department of Metallurgical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, Liaoning Province, P. R. China;
2. State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China;
3. EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA;
4. Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
5. School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
Download:   PDF(2958KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Themethylation of 4-methylbiphenyl (4-MBP) can yield 4,4'-dimethylbiphenyl (4,4'-DMBP), an important precursor for advanced polymers. The reaction mechanismof the shape-selective methylation of 4-MBP with methanol within the pores of H-ZSM-5 zeolite was studied, using“our own-N-layered integrated molecular orbital+molecular mechanics”(ONIOM) and density functional theory (DFT) methods. Stepwise and concerted mechanisms were considered, with the former having a lower activation energy. 4,4'-DMBPis kinetically favored by both mechanisms. Transition state selectivity accounts for the preferential methylation to 4,4'-DMBP. The isomerization of 4-MBPto 3-methylbiphenyl (3-MBP) is restricted within the zeolite. The isomerization of 4-MBP to 3-MBPis kinetically favored over methylation on the external zeolite surface, which causes a decrease in 4, 4'-DMBP selectivity. Passivating the external surface will suppress 4-MBP isomerization, therefore increasing 4,4'-DMBP selectivity by restricting reaction within the zeolite. The computational results of shape-selective and non-selective reactions over H-ZSM-5 zeolite well account for the experimental observations.



Key wordsONIOM      Methylation      Methanol      4-MBP      H-ZSM-5     
Received: 16 September 2014      Published: 05 November 2014
MSC2000:  O641  
Fund:  

The project was supported by Scientific Research Foundation for the General Program of Department of Education of Liaoning Province, China (L2014503), Research Fund for the Doctoral Programof Liaoning Institute of Science and Technology, China (1406B08), Programfor New Century Excellent Talent in Universities, China (NCET-04-0268), Plan 111 Project of the Ministry of Education of China, and High Performance Computing Department of Network and Information Center, Dalian University of Technology, China.

Corresponding Authors: JANIK J. Michael, GUO Xin-Wen     E-mail: mjanik@engr.psu.edu;guoxw@dlut.edu.cn
Cite this article:

LI Ling-Ling, JANIK J. Michael, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Methylation of 4-Methylbiphenyl with Methanol over H-ZSM-5 Zeolite. Acta Phys. Chim. Sin., 2015, 31(1): 56-66.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201411052     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I1/56

(1) Song, C.; Schobert, H. H. Fuel Process. Technol. 1993, 34, 157. doi: 10.1016/0378-3820(93)90098-O
(2) Song, C.; Graces, J. M.; Sugi, Y. ACS Symp. Ser. 1999, 738, 248. doi: 10.1021/symposium
(3) Lee, G. S.; Maj, J. J.; Rocke, S. C.; Garces, J. M. Catal. Lett. 1989, 2, 243. doi: 10.1007/BF00766213
(4) Sugi, Y.; Kubota, Y.; Nakajima, K.; Kunimori, K.; Hanaoka, H.; Matsuzaki, T. Am. Chem. Soc. Div. Petrol. Chem. Prepr. 1998, 43, 264.
(5) Aguilar, J.; Melo, F. V.; Sastre, E. Appl. Catal. A: Gen. 1998, 175, 181. doi: 10.1016/S0926-860X(98)00215-4
(6) Guo, X. W.; Wang, X. S.; Shen, J. P.; Song, C. S. Catal. Today 2004, 93-95, 411.
(7) Wang, Y. N.; Guo, X. W.; Zhang, C.; Song, F. L.; Wang, X. S.; Liu, H. O.; Xu, X. C.; Song, C. S.; Zhang, W. P.; Liu, X. M.; Han, X. W.; Bao, X. H. Catal. Lett. 2006, 107, 209. doi: 10.1007/s10562-006-0004-3
(8) Brechtelsbauer, C.; Emig, G. Appl. Catal. A: Gen. 1997, 161, 79. doi: 10.1016/S0926-860X(96)00382-1
(9) Guo, X. W.; Shen, J. P.; Song, C.; Wang, X. Appl. Catal. A: Gen. 2004, 261, 183. doi: 10.1016/j.apcata.2003.11.001
(10) Dubuis, S.; Doepper, R.; Renken, A. Stud. Surf. Sci. Catal. 1999, 122, 359. doi: 10.1016/S0167-2991(99)80167-0
(11) Tawada, S.; Sugi, Y.; Kubota, Y.; Imada, Y.; Hanaoka, T.; Matsuzaki, T.; Nakajima, K.; Kunimori, K.; Kim, J. H. Catal. Today 2000, 60, 243. doi: 10.1016/S0920-5861(00)00341-2
(12) Sugi, Y.; Sugimura, T.; Tawadaa, S.; Kubota, Y.; Hanaoka, T.; Matsuzaki, T. Catal. Lett. 2001, 77, 1. doi: 10.1023/A:1012754319273
(13) Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864
(14) Andzelm, J.; Wimmer, E. J. Chem. Phys. 1992, 96, 1280. doi: 10.1063/1.462165
(15) Stephens, P. J.; Devlin, F. J.; Frisch, M. J.; Chabalowski, C. F. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
(16) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(17) Wang, Y.; Yang, G.; Zhou, D. H.; Bao, X. H. J. Phys. Chem. B 2004, 108, 18228. doi: 10.1021/jp049384w
(18) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.
(19) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. -Theochem 1999, 461-462, 1.
(20) Namuangruk, S.; Meeprasert, J.; Khmthong, P.; Faungnawakij, K. J. Phys. Chem. C 2011, 15, 11649.
(21) Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.; Limtrakul, J. J. Phys. Chem. C 2009, 113, 6654. doi: 10.1021/jp809746a
(22) Nie, X. W.; Janik, M. J.; Guo, X. W.; Liu, X.; Song, C. S. J. Phys. Chem. C 2012, 116, 4071. doi: 10.1021/jp209337m
(23) Li, L. L.; Janik, J. M.; Nie, X. W.; Song, C. S.; Guo, X. W. Acta Phys. -Chim. Sin. 2013, 29, 1467. [李玲玲, Janik, J. M.,聂小娃,宋春山, 郭新闻.物理化学学报, 2013, 29, 1467.] doi: 10.3866/PKU.WHXB201304262
(24) Li, L. L.; Nie, X. W.; Song, C. S.; Guo, X. W. Acta Phys. -Chim. Sin. 2013, 29, 754. [李玲玲, 聂小娃,宋春山, 郭新闻.物理化学学报, 2013, 29, 754.] doi: 10.3866/PKU.WHXB201302063
(25) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier, W. M. J. Phys. Chem. 1981, 85, 2238. doi: 10.1021/j150615a020
(26) Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. Nature 1978, 272, 437. doi: 10.1038/272437a0
(27) Vankoningsveld, H.; Vanbekkum, H.; Jansen, J. C. Acta Crystallogr. Sect. B- Struct. Sci. 1987, 43, 127. doi: 10.1107/S0108768187098173
(28) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29, 715. [张佳,周丹红,倪丹.催化学报, 2008, 29, 715.]
(29) Li, J. H.; Zhou, D. H.; Ren, J. Acta Phys. -Chim. Sin. 2011, 27, 1393. [李惊鸿, 周丹红,任珏.物理化学学报, 2011, 27, 1393.] doi: 10.3866/PKU.WHXB20110631
(30) Zuo, S. Y.; Zhou, D. H.; Ren, J.; Wang, F. J. Chin. J. Catal. 2012, 33, 1367. [左士颖, 周丹红,任珏,王凤娇.催化学报, 2012, 33, 1367.]
(31) Jansang, B.; Nanok, T.; Limtrakul, J. J. Phys. Chem. C 2008, 112, 540. doi: 10.1021/jp077246b
(32) Kumsapaya, C.; Bobuatong, K.; Khongpracha, P.; Tantirungrotechai, Y.; Limtrakul, J. J. Phys. Chem. C 2009, 113, 16128. doi: 10.1021/jp904098t
(33) Chu, Y. Y.; Han, B.; Zheng, A. M.; Deng, F. J. Phys. Chem. C 2012, 116, 12687. doi: 10.1021/jp302960w
(34) Zheng, A. M.; Chen, L.; Yang, J.; Zhang, M. J.; Su, Y. C.; Yue, Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B 2005, 109, 24273. doi: 10.1021/jp0527249
(35) Rappe, A. K.; Upton, T. H. J. Am. Chem. Soc. 1992, 114, 7507. doi: 10.1021/ja00045a026
(36) Derouane, E. G. J. Catal. 1986, 100, 541. doi: 10.1016/0021-9517(86)90127-2
(37) Derouane, G.; Andre, J. M.; Lucas, A. A. J. Catal. 1988, 110, 58. doi: 10.1016/0021-9517(88)90297-7
(38) Nie, X. W.; Janik, J. M.; Guo, X. W.; Song, C. S. Phys. Chem. Chem. Phys. 2012, 14, 16644. doi: 10.1039/c2cp41824j
(39) Sameera, W. M. C.; Maseras, F. Phys. Chem. Chem. Phys. 2011, 13, 10520. doi: 10.1039/c0cp02957b
(40) Van Speybroeck, V.; Van der Mynsbrugge, J.; Vandichel, M.; Hemelsoet, K.; Lesthaeghe, D.; Ghysels, A.; Marin, B. G.; Waroquier, M. J. Am. Chem. Soc. 2011, 133, 888.
(41) Van der Mynsbrugge, J.; Visur, M.; Olsbye, U.; Beato, P.; Bjørgen, M.; Van Speybroeck, V.; Svelle, S. J. Catal. 2012, 292, 201. doi: 10.1016/j.jcat.2012.05.015
(42) Morokuma, K. Bull. Korean Chem. Soc. 2003, 24, 797. doi: 10.5012/bkcs.2003.24.6.797
(43) Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419.
(44) Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. doi: 10.1039/b810189b
(45) Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670. doi: 10.1039/c0cp02984j
(46) Van der Mynsbrugge, J.; Hemelsoet, K.; Vandichel, M.; Waroquier, M.; Van Speybroeck, V. J. Phys. Chem. C 2012, 116, 5499. doi: 10.1021/jp2123828
(47) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(48) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, 2009.
(49) Lee, C. C.; Gorte, R. J.; Farneth, W. E. J. Phys. Chem. B 1997, 101, 3811. doi: 10.1021/jp970711s
(50) Mirth, G.; Lercher, J. A. J. Phys. Chem. 1991, 95, 3736. doi: 10.1021/j100162a055
(51) Rozanska, X.; van Santen, R. A.; Hutschka, F.; Hafner, J. J. Am. Chem. Soc. 2001, 123, 7655. doi: 10.1021/ja0103795

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[5] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[6] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[7] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1473-1481.
[8] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1175-1182.
[9] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[10] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2671-2677.
[11] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1374-1382.
[12] ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1077-1085.
[13] LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua. Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2015, 31(5): 927-932.
[14] CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2015, 31(2): 302-308.
[15] GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo. One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2117-2123.