Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (1): 153-158    DOI: 10.3866/PKU.WHXB201411175
Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution
LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng
Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download:   PDF(1286KB) Export: BibTeX | EndNote (RIS)      


NiS-modified Cd1-xZnxS has been prepared using a simple hydrothermal method. Notably, the H2 evolution rate of 0.5% (y, molar fraction) NiS/Cd0.3Zn0.7S(1840 μmol·h-1) was found to be 2.1- and 1.3-fold greater than those of Cd0.3Zn0.7S(884 μmol·h-1) and 0.5% (w, mass fraction) Pt (1390 μmol·h-1), respectively, when 0.35 mol·L-1 Na2SO3 and 0.25 mol·L-1 Na2Swere used as sacrificial agents. The apparent quantumefficiency of 0.5% (y) NiS/Cd0.3Zn0.7S at 420 nm was 36.8%. The characterization of this material by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) showed that the NiS particles provided the active sites required for H2 evolution and transferring the photo generated electrons, and therefore enhanced the photocatalytic activity of the catalyst towards H2 production.

Key wordsCd1-xZnxS      NiS      Hydrothermal method      Photocatalytic activity      Hydrogen production     
Received: 08 October 2014      Published: 17 November 2014
MSC2000:  O643  

The project was supported by the National High Technology Research and Development Programof China (863) (2012AA051501) and International Cooperation Project of Shanghai Municipal Science and Technology Commission, China (12160705700).

Corresponding Authors: SHANGGUAN Wen-Feng     E-mail:
Cite this article:

LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution. Acta Phys. -Chim. Sin., 2015, 31(1): 153-158.

URL:     OR

(1) Andrews, J.; Shabani, B. Int. J. Hydrog. Energy 2012, 37, 1184. doi: 10.1016/j.ijhydene.2011.09.137
(2) Lewis, N. S. Science 2007, 315, 798. doi: 10.1126/science.1137014
(3) Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Nature 2002, 418, 964. doi: 10.1038/nature01009
(4) Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197
(5) Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
(6) Kudo, Y.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
(7) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
(8) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(9) Navarro, Y. R.; álvarez, G. M.; Del, V. F.; José, A. V. M.; José, L. G. F. ChemSusChem 2009, 2, 471. doi: 10.1002/cssc.v2:6
(10) Zhang, K.; Guo, L. Catal. Sci. Technol. 2013, 3, 1672. doi: 10.1039/c3cy00018d
(11) Dong, L. L.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. Acta Phys. -Chim. Sin. 2014, 30, 135. [董莉莉, 王英勇,童希立,靳国强, 郭向云.物理化学学报, 2014, 30, 135.] doi: 10.3866/PKU.WHXB201311052
(12) Buehler, N.; Meier, K.; Reber, J. F. J. Phys. Chem. 1984, 88, 3261. doi: 10.1021/j150659a025
(13) Bao, N.; Shen, L.; Takata, T.; Domen, K. Chem. Mat. 2008, 20, 110. doi: 10.1021/cm7029344
(14) Li, Y. X.; Hu, Y. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. J. Phys. Chem. C 2009, 113, 9352.
(15) Chen, X. P.; Shangguan, W. F. Front. Energy 2013, 7, 111. doi: 10.1007/s11708-012-0228-4
(16) Meissner, D.; Memming, R.; Kastening, B. J. Phys. Chem. 1988, 92, 3476. doi: 10.1021/j100323a032
(17) Acharya, K. P.; Khnayzer, R. S.;O'Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. Nano Lett. 2011, 11, 2919.
(18) Zong, X.; Yan, H. J.; Wu, G. B.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
(19) Lin, P. B.; Yang, Y.; Chen, W.; Gao, H. Y.; Chen, X. P.; Yuan, J.; Shangguan, W. F. Acta Phys. -Chim. Sin. 2013, 29 (6), 1313. [林培宾,杨俞,陈威,高寒阳, 陈小平,袁坚,上官文峰. 物理化学学报, 2013, 29 (6), 1313.] doi: 10.3866/PKU.WHXB201303141
(20) Chen, X. P.; Chen, W.; Lin, P. B.; Yang, Y.; Gao, H. Y.; Yuan, J.; Shangguan, W. F. Catal. Commun. 2013, 36, 104. doi: 10.1016/j.catcom.2013.03.016
(21) Wang, X. W.; Liu, G.; Chen, Z. G.; Li, F.; Wang, L. Z.; Lu, G. Q.; Cheng, H. M. Chem. Commun. 2009, 3452.
(22) Li, W.; Xie, S. L.; Li, M. Y.; Ouyang, X. W.; Cui, G. F.; Lu, X. H.; Tong, Y. X. J. Mater. Chem. A 2013, 1, 4190. doi: 10.1039/c3ta10394c
(23) Shangguan, W. F.; Yoshida, A. J. Phys. Chem. B 2002, 106, 12227. doi: 10.1021/jp0212500
(24) Jang, J. S.; Kim, H. G.; Joshi, U. A.; Janga, J. W.; Lee, J. S. Int. J. Hydrog. Energy 2008, 33, 5975. doi: 10.1016/j.ijhydene.2008.07.105
(25) Wu, G.; Tian, M.; Chen, A. J. Photochem. Photobiol. 2012, 233, 65. doi: 10.1016/j.jphotochem.2012.02.021
(26) Villoria, J. A.; Navarro, Y. R.; Al-Zahrani, S. M.; Fierro, J. L. G. Ind. Eng. Chem. Res. 2010, 49, 6854. doi: 10.1021/ie901718r
(27) Shi, J. Y.; Cui, H. N.; Liang, Z. X.; Lu, X. H.; Tong, Y. X.; Su, C. Y.; Liu, H. Energy Environ. Sci. 2011, 4, 466. doi: 10.1039/c0ee00309c
(28) Xing, C.; Zhang, Y.; Yan, W.; Guo, L. Int. J. Hydrog. Energy 2006, 31, 2018. doi: 10.1016/j.ijhydene.2006.02.003
(29) Zhang, X. H.; Jing, D. W.; Liu, M. C.; Guo, L. J. Catal. Commun. 2008, 9, 1720. doi: 10.1016/j.catcom.2008.01.032
(30) Zhang, W.; Xu, R. Int. J. Hydrog. Energy 2009, 34, 8495. doi: 10.1016/j.ijhydene.2009.08.041
(31) Wang, J.; Li, B.; Chen, J. Z.; Li, N.; Zheng, J. F.; Zhao, J. H.; Zhua, Z. P. Appl. Surf. Sci. 2012, 259, 118.
(32) Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. ACS Catal. 2013, 3, 882. doi: 10.1021/cs4000975
(33) Yu, Y. G.; Chen, G.; Hao, L. X. Chem. Commun. 2013, 49, 10142. doi: 10.1039/c3cc45568h
(34) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
(35) Ran, J. R.; Zhang, J.; Yu, J. G.; Jaronie, M.; Zhang, S. Chem. Soc. Rev. 2014, doi: 10.1039/c3cs60425j
(36) Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Angew. Chem. Int. Edit. 2006, 45, 7806.
(37) Wang, Y. B.; Wang, Y. S.; Xu, R. J. Phys. Chem. C 2013, 117, 783.
(38) Ran, J. R.; Yu, J. G.; Jaroniec, M. Green Chem. 2011, 13, 2708. doi: 10.1039/c1gc15465f
(39) Zhang, W.; Wang, Y. B.; Wang, Z.; Zhong, Z. Y.; Xu, R. Chem. Commun. 2010, 46, 7631. doi: 10.1039/c0cc01562h
(40) Li, N. X.; Zhou, B. Y.; Guo, P. H.; Zhou, J. C.; Jing, D. W. Int. J. Hydrog. Energy 2013, 38, 11268. doi: 10.1016/j.ijhydene.2013.06.067
(41) Valle, F. D.; Ishikawa, A.; Domen, K.; Villoria, J. A.; Mano, D. L.; Sánchez-Sánchez, M. C.; González, I. D.; Herreras, S.; Mota, N.; Rivas, M. E.; álvarez, G. M. C.; Fierro, J. L. G.; Navarro, R. M. Catal. Today 2009, 143, 51. doi: 10.1016/j.cattod.2008.09.024
(42) Assuncao, N. A.; Giz, M. J.; Tremiliosi, G.; Gonzalez, E. R. J. Electrochem. Soc. 1997, 144, 2794. doi: 10.1149/1.1837897

[1] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[2] Pengfei LU,Yudan GOU,Jiuning HE,Ping LI,Changhua ZHANG,Xiangyuan LI. Shock Tube Study of Methyl Pentanoate Ignition at High Temperatures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 618-624.
[3] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[4] Linji GONG,Jiani XIE,Shuang ZHU,Zhanjun GU,Yuliang ZHAO. Application of Multifunctional Nanomaterials in Tumor Radiosensitization[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 140-167.
[5] Pan LUO,Fang SUN,Ju DENG,Haitao XU,Huijuan ZHANG,Yu WANG. Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1397-1404.
[6] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[7] Jie XIAO,Bo ZHANG,Zhao-Lei ZHENG. Development and Validation of a Reduced Chemical Kinetic Mechanism for HCCI Engine of Biodiesel Surrogate[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1752-1764.
[8] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[9] Ling-Xuan WANG,Hua-Tong ZHU,Li-Li ZU. Studying ionization and decomposition mechanism of alkyl dinitrites by mass spectrometry[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1709-1714.
[10] Xin-Lei WANG,Kui MA,Li-Hong GUO,Tong DING,Qing-Peng CHENG,Ye TIAN,Xin-Gang LI. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1699-1708.
[11] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[12] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[13] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[14] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.
[15] Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.