Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (1): 159-165    DOI: 10.3866/PKU.WHXB201411201
Effect of K+ Doping on the Band Structure and Photocatalytic Performance of Graphitic Carbon Nitride Photocatalysts
ZHANG Jian, WANG Yan-Juan, HU Shao-Zheng
Division of Chemistry, Chemical Engineering and Environment, Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China
Download:   PDF(727KB) Export: BibTeX | EndNote (RIS)      


Aseries of band gap-tunable K+ doped graphitic carbon nitride (g-C3N4) photocatalysts have been prepared using potassiumhydrate and melamine as precursors, and fully characterized by X-ray diffraction (XRD), UV-Vis spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), Fourier transform infrared (FTIR) spectroscopy, N2 adsorption, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). The results of these analyses indicated that the positions of the valence and conduction bands were obviously changed as the concentration of K+ increased. The K+ ions were found to be embedded in the structural units of the g-C3N4, which inhibited the growth of the graphitic carbon nitride crystals, enhanced the surface area, and increased the separation rate of the photogenerated electrons and holes. The activity of K+ doped g-C3N4 catalysts was tested towards the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The result indicated that the activity improved significantly after K+ doping. Furthermore, the K+ doped g-C3N4 catalysts exhibited outstanding structural and catalytic stability.

Key wordsGraphitic carbon nitride      Tunable band      K+ doping      Stability      Visible light     
Received: 24 September 2014      Published: 20 November 2014
MSC2000:  O643  

The project was supported by the Education Department of Liaoning Province, China (L2013150).

Corresponding Authors: HU Shao-Zheng     E-mail:
Cite this article:

ZHANG Jian, WANG Yan-Juan, HU Shao-Zheng. Effect of K+ Doping on the Band Structure and Photocatalytic Performance of Graphitic Carbon Nitride Photocatalysts. Acta Phys. -Chim. Sin., 2015, 31(1): 159-165.

URL:     OR

(1) Zhang, J. S.; Zhang, G. G.; Chen, X. F.; Lin, S.; Möhlmann, L.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. C. Angew. Chem. Int. Edit. 2012, 51, 3183. doi: 10.1002/anie.v51.13
(2) Bu, Y. Y.; Chen, Z. Y.; Li, W. B. Appl. Catal. B: Environ. 2014, 144, 622. doi: 10.1016/j.apcatb.2013.07.066
(3) Xu, J.;Wu, H. T.; Wang, X.; Xue, B.; Li, Y. X.; Cao, Y. Phys. Chem. Chem. Phys. 2013, 15, 4510. doi: 10.1039/c3cp44402c
(4) Sridharan, K.; Jang, E.; Park, T. J. Appl. Catal. B: Environ. 2013, 142 -143, 718.
(5) Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.v22.22
(6) Salinas, D.; Araya, P.; Guerrero, S. Appl. Catal. B: Environ. 2012, 117 -118, 260.
(7) Chu, H.; Yang, L. J.; Zhang, Q. H.; Wang, Y. J. Catal. 2006, 241, 225. doi: 10.1016/j.jcat.2006.04.028
(8) Pekridis, G.; Kaklidis, N.; Konsolakis, M.; Athanasiou, C.; Yentekakis, I. V.; Marnellos, G. E. Solid State Ionics 2011, 192, 653. doi: 10.1016/j.ssi.2010.03.024
(9) Qu, Z. P.; Bu, Y. B.; Qin, Y.; Wang, Y.; Fu, Q. Chem. Eng. J. 2012, 209, 163. doi: 10.1016/j.cej.2012.07.138
(10) Grzechulska, J.; Hamerski, M.; Morawski, A. W. Water Res. 2000, 34, 1638. doi: 10.1016/S0043-1354(99)00275-4
(11) Chen, L. C.; Huang, M.; Tsai, F. R. J. Mol. Catal. A: Chem. 2007, 265, 133. doi: 10.1016/j.molcata.2006.10.011
(12) Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Chem. Eur. J. 2008, 14, 8177. doi: 10.1002/chem.v14:27
(13) Wang, Y.; Wang, X. C.; Antonietti, M. Angew. Chem. Int. Edit. 2012, 51, 68. doi: 10.1002/anie.201101182
(14) Ma, X. G.; Lv, Y. H.; Xu, J.; Liu, Y. F.; Zhang, R. Q.; Zhu, Y. F. J. Phys. Chem. C 2012, 116, 23485. doi: 10.1021/jp308334x
(15) Zhang, Y. W.; Liu, J. H.; Wu, G.; Chen, W. Nanoscale 2012, 4, 5300. doi: 10.1039/c2nr30948c
(16) Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Chem. Mater. 2000, 12, 3264. doi: 10.1021/cm000328r
(17) Lei, W.; Portehault, D.; Dimova, R.; Antoniettit, M. J. Am. Chem. Soc. 2011, 133, 7121. doi: 10.1021/ja200838c
(18) Miyakoshi, A.; Ueno, A.; Ichikawa, M. Appl. Catal. A: Gen. 2001, 219, 249. doi: 10.1016/S0926-860X(01)00697-4
(19) Muhler, M.; Schlogl, R.; Ertl, G. J. Catal. 1992, 138, 413. doi: 10.1016/0021-9517(92)90295-S
(20) Dong, G. P.; Zhang, Y. H.; Pan, Q. W.; Qiu, J. R. J. Photochem. Photobiol. C: Photochem. Rev. 2014, 20, 33. doi: 10.1016/j.jphotochemrev.2014.04.002
(21) Jin, R. R.; You, J. G.; Zhang, Q.; Liu, D.; Hu, S. Z.; Gui, J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1706. [金瑞瑞, 游继光, 张倩, 刘丹, 胡绍争,桂建舟. 物理化学学报, 2014, 30, 1706.] doi: 10.3866/PKU.WHXB201406272
(22) Ge, L.; Han, C. Appl. Catal. B: Environ. 2012, 117 -118, 268.
(23) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Domen, K.; Antonietti, M. Nat. Mater., 2009, 8, 76. doi: 10.1038/nmat2317
(24) Liu, G.; Niu, P.; Yin, L. C.; Cheng, H. M. J. Am. Chem. Soc. 2012, 134, 9070. doi: 10.1021/ja302897b
(25) Li, X. Y.; Wang, D. S.; Cheng, G. X.; Luo, Q. Z.; An, J.; Wang, Y. H. Appl. Catal. B: Environ. 2008, 81, 267. doi: 10.1016/j.apcatb.2007.12.022

[1] Wenjun CHEN,Zhimin XUE,Jinfang WANG,Jingyun JIANG,Xinhui ZHAO,Tiancheng MU. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 904-911.
[2] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 683-391.
[3] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[4] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[5] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1781-1788.
[6] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[7] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[8] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[9] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.
[10] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[11] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 611-619.
[12] Xu-Xia SHAI,Dan LI,Shuang-Shuang LIU,Hao LI,Ming-Kui WANG. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2159-2170.
[13] Dong-Mei LIANG,Xia LENG,Yu-Chen MA. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1967-1976.
[14] Juan XIAO,Hao-Li ZHANG. Recent Progress in Organic-Inorganic Hybrid Perovskite Materials for Luminescence Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1894-1912.
[15] Xiao-Xiang SUN,Yu CHEN,Jian-Xi ZHAO. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2045-2051.