Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (1): 90-98    DOI: 10.3866/PKU.WHXB201411202
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite
WANG Jian-De1, PENG Tong-Jiang2,3, XIAN Hai-Yang3, SUN Hong-Juan3
1. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, Sichuan Province, P. R. China;
2. Center of Forecasting and Analysis, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, P. R. China;
3. Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang 621000, Sichuan Province, P. R. China
Download:   PDF(4046KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Three-dimensional reduced graphene oxide (RGO)/polyaniline (PANI) composite has been prepared in a single step by the ultrasonic irradiation of a suspension of graphite oxide gels and PANI nanowire using a hydrothermal method. Scanning electronic microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectra (XPS), and electrochemical measurements were performed to investigate the morphology, structure, and supercapacitive performance of the composite. The result showed that the composite maintained the basic morphology of RGO, and that the PANI was inlayed inside the RGO network. An outstanding supercapacitive performance was obtained when the mass ratio of graphite oxide and PANI was 1:1. Furthermore, the capacities reached 758 and 400 F·g-1 at 0.5 and 30A·g-1, respectively. The retention rate was found to be 86% after 1000 cycles at 1 A·g-1. These results therefore indicate that this new composite possesses good rate capability and cycle stability, and that its supercapacitive performance is better than that of pure RGO or PANI. The excellent supercapacitive performance of this composite can be attributed to the mutual synergy of RGO and PANI.



Key wordsGraphite oxide gel      Polyaniline      Hydrothermal method      Three-dimensional reduced graphene oxide/polyaniline      Supercapacitive performance     
Received: 20 October 2014      Published: 20 November 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (41272051), Doctor Fund Project by Southwest University of Science and Technology, China (11ZX7135), Postgraduate Innovation Fund Project by Southwest University of Science and Technology, China (14ycx003), and Miaozi Subtopic Project for the Construction of Mianyang Sci-Tech City University Students' Innovative Undertaking Club Demonstration Site, China (2014RZ0038-15).

Corresponding Authors: PENG Tong-Jiang     E-mail: tjpeng@swust.edu.cn
Cite this article:

WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201411202     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I1/90

(1) Snook, G.; Kao, P.; Best, A. S. J. Power Sources 2011, 196, 1.
(2) Xu, G.; Wang, N.; Wei, J.; Lv, L.; Zhang, J.; Chen, Z.; Xu, Q. Ind. Eng. Chem. Fundam. 2012, 51, 14390. doi: 10.1021/ie301734f
(3) Jin, Y.; Chen, H. Y.; Chen, M. H.; Liu, N.; LI, Q. W. Acta Phys. -Chim. Sin. 2012, 28 (3), 609. [靳瑜,陈宏源, 陈名海,刘宁,李清文.物理化学学报, 2012, 28 (3), 609.] doi: 10.3866/PKU.WHXB201201162
(4) Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z. Electrochem. Commun. 2008, 10 (7), 1056. doi: 10.1016/j.elecom.2008.05.007
(5) Bai, S.; Shen, X. RSC Adv. 2012, 2, 64. doi: 10.1039/c1ra00260k
(6) Nemzer, L. R.; Schwartz, A.; Epstein, A. J. Macromolecules 2010, 43 (9), 4324. doi: 10.1021/ma100112g
(7) Zhang, L. Y.; He, S. J.; Chen, S. L.; Guo, Q. H.; Hou, H. Q. Acta Phys. -Chim. Sin. 2010, 26 (12), 3181. [张雷勇, 何水剑, 陈水亮,郭乔辉, 侯豪情.物理化学学报, 2010, 26 (12), 3181.] doi: 10.3866/PKU.WHXB20101135
(8) Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J. ACS Appl. Mater. Interfaces 2010, 2 (9), 2521. doi: 10.1021/am100293r
(9) Liu, H.; Zhang, W.; Song, H.; Chen, X.; Zhou, J.; Ma, Z. Electrochim. Acta 2014, 146, 511. doi: 10.1016/j.electacta.2014.09.083
(10) Sun, Y. Q.; Shi, G. Q. J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 231. doi: 10.1002/polb.23226
(11) Zhou, S. P.; Zhang, H. M.; Zhao, Q.; Wang, X. H.; Liu, J.; Wang, F. S. Carbon 2013, 5, 440.
(12) Li, Z. F.; Zhang, H. Y.; Liu, Q.; Sun, L. L.; Xie, J. ACS Appl. Mater. Interfaces 2013, 5, 2685. doi: 10.1021/am4001634
(13) Wang, H. Z.; Gao, C. X.; Zhang, P.; Yao, S. W.; Zhang, W. G. Acta Phys. -Chim. Sin. 2013, 29 (1), 117. [王宏智, 高翠侠, 张鹏,姚素薇, 张卫国.物理化学学报, 2013, 29 (1), 117.] doi: 10.3866/PKU.WHXB201210234
(14) Gao, Z.; Yang, W. L.; Wang, J.; Yan, H. J.; Yao, Y.; Ma, J.; Wang, B.; Zhang, M. L.; Liu, L. H. Electrochim. Acta 2013, 91, 182.
(15) Zhang, K.; Zhang, L. L.; Zhang, X. S.; Wu, J. S. J. Mater. Chem. 2010, 22, 1392. doi: 10.1021/cm902876u
(16) Li, J.; Xie, H. Q.; Li, Y.; Liu, J.; Li, Z. X. J. Power Sources 2011, 196, 10775. doi: 10.1016/j.jpowsour.2011.08.105
(17) Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai, L.; Baek, J. B. ACS Nano 2012, 6 (2), 1715. doi: 10.1021/nn204688c
(18) An, J.; Liu, J.; Zhou, Y.; Zhao, H.; Ma, Y.; Li, M.; Li, S. J. Phys. Chem. C 2012, 116 (37), 19699. doi: 10.1021/jp306274n
(19) Xu, R.; Tang, Z. L.; Li, J. R.; Zhang, Z. T. Prog. Chem. 2009, 21 (1), 235. [徐睿,唐子龙,李俊荣, 张中太.化学进展, 2009, 21 (1), 235.]
(20) Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C. B.; Liu, T. X. ACS Appl. Mater. Interfaces 2013, 5, 3382. doi: 10.1021/am4003827
(21) Liu, J. H.; An, J. W.; Zhou, Y. C.; Ma, Y. X.; Li, M. L.; Yu, M. ACS Appl. Mater. Interfaces 2012, 4, 2870. doi: 10.1021/am300640y
(22) Wang, J. D.; Peng, T. J.; Sun, H. J.; Hou, Y. D. Acta Phys. -Chim. Sin. 2014, 30 (11), 2077. [汪建德,彭同江, 孙红娟,侯云丹. 物理化学学报, 2014, 30 (11), 2077.] doi: 10.3866/PKU.WHXB201409152
(23) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39 (1), 228. doi: 10.1039/b917103g
(24) Niu, Z.; Liu, L.; Zhang, L.; Shao, Q.; Zhou, W.; Chen, X.; Xie, S. Adv. Mater. 2014, 26 (22), 3681. doi: 10.1002/adma.201400143.
(25) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27 (3), 736. [杨勇辉,孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27 (3), 736.] doi: 10.3866/PKU.WHXB20110320
(26) Pouget, J.; Jozefowicz, M.; Epstein, A.; Tang, X.; MacDiarmid, A. Macromolecules 1991, 24, 779. doi: 10.1021/ma00003a022
(27) Kumar, M.; Singh, K.; Dhawan, S. K.; Tharanikkarasu, K.; Chung, J. S.; Kong, B. S.; Kim, E. J.; Hur, S. H. Biochem. Eng. J. 2013, 231, 397.
(28) Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, L. J.; Shen, L. F.; Zhang, F.; Zhang, X. G.; Electrochim. Acta 2011, 56, 9224. doi: 10.1016/j.electacta.2011.07.142
(29) Acevedo, D. F.; Rivarola, C. R.; Miras, M. C.; Barbero, C. A. Electrochim. Acta 2011, 56 (10), 3468. doi: 10.1016/j.electacta.2011.01.041
(30) Rozlivkova, Z.; Trchova, M.; Exnerova, M.; Stejskal, J. Synth. Met. 2011, 161 (11), 1122.
(31) Laslau, C.; Zujovic, Z.; Travas-Sejdic, J. Prog. Polym. Sci. 2010, 35 (12), 1403. doi: 10.1016/j.progpolymsci.2010.08.002
(32) Zhu, C.; Guo, S.; Fang, Y.; Dong, S. ACS Nano 2010, 4, 2429. doi: 10.1021/nn1002387
(33) Golczak, S.; Kanciurzewska, A.; Fahlman, M.; Langer, K.; Langer, J. Solid State Ionics 2008, 179 (39), 2234. doi: 10.1016/j.ssi.2008.08.004
(34) Al-Mashat, L.; Shin, K.; Kalantar-zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W. J. Phys. Chem. C 2010, 114 (39), 16168. doi: 10.1021/jp103134u
(35) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/b813846j
(36) Ding, M. N.; Tang, Y. F.; Gou, P. P.; Reber, M. J.; Star, A. A. Adv. Mater. 2011, 23 (4), 536. doi: 10.1002/adma.v23.4
(37) Yang, F.; Xu, M.; Bao, S. J.; Wei, H.; Chai, H. Electrochim. Acta 2014, 137, 381. doi: 10.1016/j.electacta.2014.06.017
(38) Wang, K. Y.; Xia, Y. Y. J. Electrochem. Soc. 2006, 153, A450.
(39) Ning, G.; Li, T.; Yan, J.; Xu, C.; Wei, T.; Fan, Z. Carbon 2013, 54, 241. doi: 10.1016/j.carbon.2012.11.035
(40) Park, S.; Ruoff, R. S. Nat. Nanotech. 2009, 4, 217. doi: 10.1038/nnano.2009.58
(41) Wang, K.; Huang, J. Y.; Wei, Z. X. J. Phys. Chem. C 2010, 114 (17), 8062. doi: 10.1021/jp9113255

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[4] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[5] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[6] XU Juan, LIU Jia-Qin, LI Jing-Wei, WANG Yan, Lü Jun, WU Yu-Cheng. Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2545-2554.
[7] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1421-1429.
[8] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1105-1112.
[9] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. Chim. Sin., 2015, 31(4): 783-792.
[10] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.
[11] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2332-2340.
[12] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2165-2173.
[13] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Phys. Chim. Sin., 2015, 31(1): 153-158.
[14] WANG Li-Li, XING Rui-Guang, ZHANG Bang-Wen, HOU Yuan. Preparation and Electrochemical Properties of Functionalized Graphene/Polyaniline Composite Electrode Materials[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1659-1666.
[15] LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1474-1480.