Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (2): 268-276    DOI: 10.3866/PKU.WHXB201411261
Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials
ZHANG Yuan-Hang1, WANG Zhi-Yuan1, SHI Chun-Sheng1, LIU En-Zuo1, HE Chun-Nian1, ZHAO Nai-Qin1,2
1. Tianjin Key Laboratory of Composites and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China;
2. Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
Download:   PDF(1509KB) Export: BibTeX | EndNote (RIS)      


Uniform nickel oxide nanoparticles (~10 nm) embedded in porous hard carbon (HC) spheres (90- 130 nm) for high performance lithium ion battery anode materials were synthesized via a hydrothermal method followed by impregnation and calcination. The HC spheres, which had abundant micropores and plentiful surface functional groups, allowed firm embedding and uniform dispersion of the NiO nanoparticles. The as-prepared HC/NiO composite anode exhibited excellent electrochemical performance, including high reversible capacity (764 mAh·g-1), good cycling stability (a high specific capacity of 777 mAh·g-1 after the 100th cycle at a current density of 100 mA·g-1, a capacity retention rate of 101%), and high rate capability (380 mAh·g-1 even at 800 mA·g-1). These excellent electrochemical properties were attributed to the unique structure of NiO nanoparticles tightly embedded in a hard carbon matrix. Anode materials with such a structure have the advantages of improved electronic conductivity, more accessible active sites for lithium ion insertion, and short diffusion paths for lithium ions and electrons. The observed“synergistic effects”between the hard carbon and NiO represent an advance in the electrochemical performance of such composites. The present method is an attractive route for preparing other hard carbon/metal oxide composite anodes for lithium ion batteries.

Key wordsMicropore      Hydrothermal method      Impregnation      Surface functional group      Cycling performance      Rate capability     
Received: 03 September 2014      Published: 26 November 2014
MSC2000:  O646  

The project was supported by the China-EU Science and Technology Cooperation Project (1206) and Key Technologies R & D Program of Tianjin, China (12ZCZDGX00800).

Corresponding Authors: SHI Chun-Sheng     E-mail:
Cite this article:

ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.

URL:     OR

(1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
(2) Mabuchi, A.; Tokumitsu, K.; Fujimoto, H.; Kasuh, T. J. Electrochem. Soc. 1995, 142, 1401. doi: 10.1149/1.2048589
(3) Sonobe, N.; Ishikawa, M.; Iwasaki, T. Abstract of the 35th Battery Symposium in Japan, Japan, 1994.
(4) Liu, Y. H.; Xue, J. S.; Zheng, T.; Dahn, J. R. Carbon 1996, 34, 193. doi: 10.1016/0008-6223(96)00177-7
(5) Xing,W. B.;Wilson, A. M.; Eguchi, K.; Zank, G.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2410. doi: 10.1149/1.1837828
(6) Fujimoto, H.; Tokumitsu, K.; Mabuchi, A.; Chinnasamy, N.; Kasuh, T. J. Power Sources 2010, 195, 7452. doi: 10.1016/j.jpowsour.2010.05.041
(7) Pol, V. G.; Thackeray, M. M. Energ. Environ. Sci. 2011, 4, 1904. doi: 10.1039/c0ee00256a
(8) Li,W. B.; Chen, M. M.;Wang, C. Y. Mater. Lett. 2011, 65, 3368. doi: 10.1016/j.matlet.2011.07.072
(9) Liu, T.; Luo, R.; Qiao,W. M.; Yoon, S. H.; Mochida, I. Electrochim. Acta 2010, 55, 1696. doi: 10.1016/j.electacta.2009.10.051
(10) Fey, G. T. K.; Cho, Y. D.; Chen, C. L.; Lin, Y. Y.; Kumar, T. P.; Chan, S. H. Pure Appl. Chem. 2010, 82, 2157.
(11) Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J. Carbon 2011, 39, 2211.
(12) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. doi: 10.1038/35035045
(13) Cheng, M. Y.; Hwang, B. J. J. Power Sources 2010, 195, 4977. doi: 10.1016/j.jpowsour.2010.02.059
(14) Tao, S.; Yue,W.; Zhong, M.; Chen, Z.; Ren, Y. ACS Appl. Mater. Inter. 2014, 6 (9), 6332. doi: 10.1021/am501551h
(15) Liu, X.; Or, S.W.; Jin, C.; Lv, Y.; Feng, C.; Sun, Y. Carbon 2013, 60, 215. doi: 10.1016/j.carbon.2013.04.014
(16) Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.;Wang, L. M.; Zhang, X. B. J. Mater. Chem. 2012, 22, 2844. doi: 10.1039/c2jm15865e
(17) Xie, D.; Su, Q. M.; Yuan,W.W.; Dong, Z. M.; Zhang, J.; Du, G. H. J. Phys. Chem. C 2013, 117, 24121. doi: 10.1021/jp4054814
(18) Kottegoda, I. R. M.; Idris, N. H.; Lu, L.;Wang, J. Z.; Liu, H. K. Electrochim. Acta 2011, 56, 5815. doi: 10.1016/j.electacta.2011.03.143
(19) Susantyoko, R. A.;Wang, X. H.; Xiao, Q. Z.; Fitzgerald, E.; Zhang, Q. Carbon 2014, 68, 619. doi: 10.1016/j.carbon.2013.11.041
(20) Zhang, Q. Q.; Li, R.; Zhang, M. M.; Gou, X. L. Acta Phys. -Chim. Sin. 2014, 30 (3), 476. [张晴晴, 李容, 张萌萌, 苟兴龙. 物理化学学报, 2014, 30 (3), 476.] doi: 10.3866/PKU.WHXB201401071
(21) Zhang, H. J.; Song, H. H.; Zhou, J. S.; Zhang, H. K.; Chen, X. H. Acta Phys. -Chim. Sin. 2010, 26 (5), 1259. [张慧娟, 宋怀河, 周继升, 张洪坤, 陈晓红. 物理化学学报, 2010, 26 (5), 1259.] doi: 10.3866/PKU.WHXB20100334
(22) Chang, K.; Chen,W. X.; Ma, L.; Li, H.; Huang, F. H.; Xu, Z.; Zhang, Q. B.; Lee, J. Y. J. Mater. Chem. 2011, 21, 6251. doi: 10.1039/c1jm10174a
(23) Zhu, X. J.; Zhu, Y.W.; Murali, S.; Stoller, M. D.; Ruoff, R. S. ACS Nano 2011, 5, 3333. doi: 10.1021/nn200493r
(24) Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou,W.W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y.W.; Li, C. M.; Yu, T. Energ. Environ. Sci. 2012, 5, 6559. doi: 10.1039/c2ee03396h
(25) Zhou, G. M.;Wang, D.W.; Yin, L. C.; Li, N.; Li, F.; Cheng, H. M. ACS Nano 2012, 6, 3214. doi: 10.1021/nn300098m
(26) Long, Q.; Chen,W. M.;Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang,W. X.; Huang, Y. H. Adv Mater. 2012, 24, 2047. doi: 10.1002/adma.201104634
(27) Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Nano Lett. 2013, 13, 6136.
(28) Feng, C.; Ma, J.; Li, H.; Zeng, R.; Guo, Z. P.; Liu, H. K. Mater. Res. Bull. 2009, 44, 1811.
(29) Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. Solid State Sci. 2003, 5, 895. doi: 10.1016/S1293-2558(03)00114-6
(30) Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149, A627.
(31) Zhou, G. M.;Wang, D.W.; Li, F.; Zhang, L. L.; Li, N.;Wu, Z. S.;Wen, L.; Lu, G. Q.; Cheng, H. M. Chem. Mater. 2010, 22, 5306.
(32) Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, H. K.; Dou, S. X. Electrochim. Acta 2005, 50, 3667. doi: 10.1016/j.electacta.2005.01.012
(33) Yang, S. B.; Song, H. H.; Chen, X. H. Electrochem. Commun. 2006, 8, 137. doi: 10.1016/j.elecom.2005.10.035

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] QIU Song-Bai, WENG Yu-Jing, LIU Qi-Ying, MA Long-Long, ZHANG Qi, WANG Tie-Jun. Preparation of Highly Dispersed Co/SiO2 Catalyst Using Ethylene Glycol and Its Application in Vapor-Phase Hydrogenolysis of Ethyl Lactate to 1,2-Propanediol[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1511-1518.
[3] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[4] LI Chun-Yang, GENG Long-Long, YANG Xu-Wei, WU Shu-Jie, ZHANGWen-Xiang, LIU Gang. Influence of the Surface Properties of Mesoporous Carbon on the Adsorption Removal of Ammonia under Low Concentration Conditions[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2599-2605.
[5] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1421-1429.
[6] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1105-1112.
[7] XIA Long-Fei, JIANG Zhi, SHANGGUAN Wen-Feng, GU Shun-Chao, HIRANO Shinichi. Influence of Oxidation State of Nickel Supported on TiO2 on Gas-Phase Hydrogenation of Acetonitrile[J]. Acta Phys. Chim. Sin., 2015, 31(5): 941-947.
[8] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. Chim. Sin., 2015, 31(4): 783-792.
[9] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2332-2340.
[10] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2165-2173.
[11] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Phys. Chim. Sin., 2015, 31(1): 153-158.
[12] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[13] LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1650-1658.
[14] LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1474-1480.
[15] REN Cheng-Jun, ZHOU Li-Na, SHANG Hong-Yan, CHEN Yao-Qiang. Pd-MnOx/γ-Al2O3 Monolithic Catalysts Prepared by Impregnation Method and Effect of Different Supports on Ground-Level Ozone Decomposition[J]. Acta Phys. Chim. Sin., 2014, 30(5): 957-964.