Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (2): 261-267    DOI: 10.3866/PKU.WHXB201411271
Molecular Dynamics Simulation of the Separation of CH4/CO2 by Nanoporous Graphene
WEN Bo-Yao, SUN Cheng-Zhen, BAI Bo-Feng
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
Download:   PDF(1141KB) Export: BibTeX | EndNote (RIS)      


The processes involved in the separation of gaseous CH4/CO2 mixtures using a nanoporous graphene membrane were simulated using a molecular dynamics method, and the effects of three functional modifications (i.e., N/H, all H, and N/―CH3 modifications) in the nanopores were analyzed. The results showed that the gas molecules could form an adsorption layer on the surface of the graphene. The adsorption intensity of the CO2 molecules was higher than that of the CH4 molecules. The functional modifications in the nanopores not only reduced the permeable area, but also improved the adsorption intensity of the gas molecules by changing the potential distribution of atoms at the edge of nanopores, and therefore affecting the permeability and selectivity of the gas mixture being separated by the nanoporous graphene membranes. Furthermore, the permeability of the CO2 molecules was as high as 106 GPU (1 GPU=3.35×10-10 mol·s-1·m-2·Pa-1), which was far greater than those of the existing polymer gas separation membranes. These results therefore demonstrate that nanoporous graphene membranes could be used in an extensive range of applications in industrial gas separation processes, such as natural gas processing and CO2 capture.

Key wordsNanoporous graphene      Separation membrane      Molecular dynamics      Functional modification     
Received: 29 September 2014      Published: 27 November 2014
MSC2000:  O647  

The project was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51121092) and National Funds for Distinguished Young Scientists, China (51425603).

Corresponding Authors: BAI Bo-Feng     E-mail:
Cite this article:

WEN Bo-Yao, SUN Cheng-Zhen, BAI Bo-Feng. Molecular Dynamics Simulation of the Separation of CH4/CO2 by Nanoporous Graphene. Acta Phys. -Chim. Sin., 2015, 31(2): 261-267.

URL:     OR

(1) Baker, R.W.; Lokhandwala, K. Ind. Eng. Chem. Res. 2008, 47, 2109. doi: 10.1021/ie071083w
(2) Schrier, J. ACS Appl. Mater. Inter. 2012, 4, 3745. doi: 10.1021/am300867d
(3) Hägg, M. B.; Lindbråthen, A. Ind. Eng. Chem. Res. 2005, 44, 7668. doi: 10.1021/ie050174v
(4) Liu, H.; Cooper, V. R.; Dai, S.; Jiang, D. E. J. Phys. Chem. Lett. 2012, 3, 3343. doi: 10.1021/jz301576s
(5) Baker, R.W. Ind. Eng. Chem. Res. 2002, 41, 1393. doi: 10.1021/ie0108088
(6) Bernardo, P.; Drioli, E.; Golemme, G. Ind. Eng. Chem. Res. 2009, 48, 4638. doi: 10.1021/ie8019032
(7) Yue, Y. H.; Tang, Y.; Gao, Z. Acta Phys. -Chim. Sin. 1995, 11, 912. [乐英红, 唐颐, 高滋. 物理化学学报, 1995, 11, 912.] doi: 10.3866/PKU.WHXB19951011
(8) Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28, 573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28, 573.] doi: 10.3866/PKU.WHXB201112191
(9) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(10) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
(11) Liu, Y.; Chen, X. J. Appl. Phys. 2014, 115, 034303. doi: 10.1063/1.4862312
(12) Zhu, Y.; Murali, S.; Cai,W.; Li, X.; Suk, J.W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906. doi: 10.1002/adma.201001068
(13) Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano. Lett. 2008, 8, 2458. doi: 10.1021/nl801457b
(14) Jiang, D. E.; Cooper, V. R.; Dai, S. Nano. Lett. 2009, 9, 4019. doi: 10.1021/nl9021946
(15) Lei, G.; Liu, C.; Xie, H.; Song, F. Chem. Phys. Lett. 2014, 599, 127. doi: 10.1016/j.cplett.2014.03.040
(16) Wu, T.; Xue, Q.; Ling, C.; Shan, M.; Liu, Z.; Tao, Y.; Li, X. J. Phys. Chem. C 2014, 118, 7369. doi: 10.1021/jp4096776
(17) Hauser, A.W.; Schwerdtfeger, P. Phys. Chem. Chem. Phys. 2012, 14, 13292. doi: 10.1039/c2cp41889d
(18) Koenig, S. P.;Wang, L.; Pellegrino, J.; Bunch, J. S. Nat. Nanotechnol. 2012, 7, 728. doi: 10.1038/nnano.2012.162
(19) Liu, H.; Dai, S.; Jiang, D. E. Nanoscale 2013, 5, 9984. doi: 10.1039/c3nr02852f
(20) Shan, M.; Xue, Q.; Jing, N.; Ling, C.; Zhang, T.; Yan, Z.; Zheng, J. Nanoscale 2012, 4, 5477. doi: 10.1039/c2nr31402a
(21) Sun, C. Z.; Zhang, F.; Liu, H.; Bai, B. F. CIESC J. 2014, 65, 3026. [孙成珍, 张锋, 柳海, 白博峰. 化工学报, 2014, 65, 3026.]
(22) Plimpton, S.; Crozier, P.; Thompson, A. LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator; Sandia National Laboratories: Albuquerque, NM. 2007.
(23) Stuart, S. J.; Tutein, A. B.; Harrison, J. A. J. Chem. Phys. 2000, 112, 6472. doi: 10.1063/1.481208
(24) Sun, C.; Boutilier, M. S.; Au, H.; Poesio, P.; Bai, B.; Karnik, R.; Hadjiconstantinou, N. G. Langmuir 2014, 30, 675. doi: 10.1021/la403969g
(25) Stassen, H. J. Mol. Struct: Theochem 1999, 464, 107. doi: 10.1016/S0166-1280(98)00540-5
(26) Harris, J. G.; Yung, K. H. J. Phys. Chem. 1995, 99, 12021. doi: 10.1021/j100031a034
(27) Du, H.; Li, J.; Zhang, J.; Su, G.; Li, X.; Zhao, Y. J. Phys. Chem. C 2011, 115, 23261. doi: 10.1021/jp206258u
(28) Fischbein, M. D.; Drndi?, M. Appl. Phys. Lett. 2008, 93, 113107. doi: 10.1063/1.2980518
(29) Kuhn, P.; Forget, A.; Su, D.; Thomas, A.; Antonietti, M. J. Am. Chem. Soc. 2008, 130, 13333. doi: 10.1021/ja803708s
(30) Module, F. Material Studio 6.0; Accelrys Inc.: San Diego, CA, 2011.

[1] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[2] Noriyuki YOSHII,Mika KOMORI,Shinji KAWADA,Hiroaki TAKABAYASHI,Kazushi FUJIMOTO,Susumu OKAZAKI. Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1163-1170.
[3] Liang XIN,Huai SUN. On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1179-1188.
[4] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[5] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[6] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[7] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[8] . Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[9] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[10] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[11] Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[12] Yuan ZHAO,Ze-Xing CAO. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 691-708.
[13] Li-Juan PENG,Qian YAO,Jing-Bo WANG,Ze-Rong LI,Quan ZHU,Xiang-Yuan LI. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[14] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[15] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2173-2183.