Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (2): 199-203    DOI: 10.3866/PKU.WHXB201412011
Surface Enhanced Infrared Absorption Spectroscopic Investigation of CO Electrosorption and Electrooxidation on Pt Nanocrystals
DUOLIKUN Reyisha1, YANG Yao-Yue2, CAI Wen-Bin1
1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China;
2. College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China
Download:   PDF(691KB) Export: BibTeX | EndNote (RIS)      


Electrochemical attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATRSEIRAS) has been used to investigate the facet-dependent adsorption and oxidation of CO on the {100}- preferred Pt nanocrystals (NCs). The cyclic voltammogram for the synthesized and then cleaned Pt NCs in a sulfuric acid solution displayed four pairs of redox peaks. The peaks located at 0.26 and 0.36 V were attributed to interfacial hydrogen electro-adsorption/desorption processes on the short- and long-range Pt{100} domains, respectively. Furthermore, the Pt{100} and Pt{111} domains were estimated to account for 34% and 14% of the active sites on the surfaces of the Pt NCs, respectively, based on Bi and Ge irreversible adsorption methods. Potential-dependent spectral features can be used to differentiate the adsorption and oxidation processes of linearly adsorbed CO (COL) species on the three basic planes of the Pt NCs. COL species on the Pt{110} facets were oxidized preferentially, followed sequentially by those on the Pt{111} and Pt{100} facets. COL on Pt{100} required the highest overpotential for their oxidation.

Key wordsPt nanocrystal      CO      Electrosorption      Electrooxidation      Surface enhanced infrared absorption spectroscopy     
Received: 12 September 2014      Published: 01 December 2014
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (21273046).

Corresponding Authors: YANG Yao-Yue, CAI Wen-Bin     E-mail:;
Cite this article:

DUOLIKUN Reyisha, YANG Yao-Yue, CAI Wen-Bin. Surface Enhanced Infrared Absorption Spectroscopic Investigation of CO Electrosorption and Electrooxidation on Pt Nanocrystals. Acta Phys. -Chim. Sin., 2015, 31(2): 199-203.

URL:     OR

(1) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316 (5825), 732. doi: 10.1126/science.1140484
(2) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1 (1), 37. doi: 10.1038/nchem.121
(3) Jiang, K.; Zhang, H. X.; Zou, S. Z.; Cai, W. B. Phys. Chem. Chem. Phys. 2014, 16 (38), 20360. doi: 10.1039/C4CP03151B
(4) Vidal-Iglesias, F. J.; Solla-Gullón, J.; Rodríguez, P.; Herrero, E.; Montiel, V.; Feliu, J. M.; Aldaz, A. Electrochem. Commun. 2004, 6, 1080. doi: 10.1016/j.elecom.2004.08.010
(5) Ertl, G.; Knozinger, H.; Schuth, F.;Weitkamp, J. Handbook of Heterogeneous Catalysis; JohnWiley & Sons:Weinheim, 2008.
(6) Hermann, K. Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists; John Wiley & Sons: Weinheim, 2011.
(7) Sun, D.; He, J. P.; Zhou, J. H.;Wang, T.; Di, Z. Y.; Ding, X. C. Acta Phys. -Chim. Sin. 2010, 26 (5), 1219. [孙盾, 何建平,周建华, 王涛, 狄志勇, 丁晓春. 物理化学学报, 2010, 26 (5), 1219.] doi: 10.3866/PKU.WHXB20100507
(8) Solla-Gullon, J.; Vidal-Iglesias, F. J.; Herrero, E.; Feliu, J. M.; Aldaz, A. Electrochem. Commun. 2006, 8, 189. doi: 10.1016/j.elecom.2005.11.008
(9) Coutanceau, C.; Urchaga, P.; Baranton, S. Electrochem. Commun. 2012, 22, 109. doi: 10.1016/j.elecom.2012.06.002
(10) Urchaga, P.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Langmuir 2012, 28 (7), 3658. doi: 10.1021/la202913b
(11) Brimaud, S.; Jusys, Z.; Behm, R. J. Electrocatalysis-Us 2011, 2 (2), 69. doi: 10.1007/s12678-011-0040-7
(12) Ahmadi, T. S.;Wang, Z. L.; Green, T. C.; Henglein, A.; ElSayed, M. A. Science 1996, 272 (5270), 1924. doi: 10.1126/science.272.5270.1924
(13) Vidal-Iglesias, F. J.; Solla-Gullon, J.; Herrero, E.; Aldaz, A.; Feliu, J. M. Angew. Chem. Int. Edit. 2010, 49 (39), 6998. doi: 10.1002/anie.201002501
(14) Clavilier, J.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1988, 243 (2), 419. doi: 10.1016/0022-0728(88)80045-7
(15) Gomez, R.; Llorca, M. J.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1992, 340 (1-2), 349. doi: 10.1016/0022-0728(92)80310-Z
(16) Yang, Y. Y.; Zhang, H. X.; Cai,W. B. Electrochemistry 2013, 19 (1), 6. [阳耀月, 张涵轩, 蔡文斌. 电化学, 2013, 19 (1), 6.]
(17) Zhang, H. X.;Wang, S. H.; Jiang, K.; Andre, T.; Cai,W. B. J. Power Sources 2012, 199, 165.
(18) Wang, J. Y.; Zhang, H. X.; Jiang, K.; Cai,W. B. J. Am. Chem. Soc. 2011, 133 (38), 14876. doi: 10.1021/ja205747j
(19) Solla-Gullon, J.; Rodriguez, P.; Herrero, E.; Aldaz, A.; Feliu, J. M. Phys. Chem. Chem. Phys. 2008, 10 (10), 1359. doi: 10.1039/b709809j
(20) Urchaga, P.; Baranton, S.; Coutanceau, C. Electrochim. Acta 2013, 92, 438. doi: 10.1016/j.electacta.2013.01.042
(21) Zhou, X.W.; Du, J. J.; Sun, S. G. Acta Phys. -Chim. Sin. 2014, 30 (9), 1681. [周新文, 杜娟娟, 孙世刚. 物理化学学报, 2014, 30 (9), 1681.] doi: 10.3866/PKU.WHXB201406193
(22) Jiang, K.; Xu, K.; Zou, S. Z.; Cai,W. B. J. Am. Chem. Soc. 2014, 136 (13), 4861. doi: 10.1021/ja5008917
(23) Jiang, K.; Cai,W. B. Appl. Catal. B-Environ. 2014, 147, 185. doi: 10.1016/j.apcatb.2013.08.037
(24) Yan, Y. G.; Yang, Y. Y.; Peng, B.; Malkhandi, S.; Bund, A.; Stimming, U.; Cai,W. B. J. Phys. Chem. C 2011, 115 (33), 16378.
(25) Kinomoto, Y.;Watanabe, S.; Takahashi, M.; Ito, M. Surf. Sci. 1991, 242 (1-3), 538. doi: 10.1016/0039-6028(91)90323-K
(26) Sato, T.; Kunimatsu, K.; Uchida, H.;Watanabe, M. Electrochim. Acta 2007, 53 (3), 1265. doi: 10.1016/j.electacta.2007.05.007
(27) Song, M. B.; Yoshimi, K.; Ito, M. Chem. Phys. Lett. 1996, 263 (3-4), 585. doi: 10.1016/S0009-2614(96)01230-4
(28) Lebedeva, N. P.; Rodes, A.; Feliu, J. M.; Koper, M. T. M.; van Santen, R. A. J. Phys. Chem. B 2002, 106 (38), 9863. doi: 10.1021/jp0203806
(29) Inukai, J.; Tryk, D. A.; Abe, T.;Wakisaka, M.; Uchida, H.; Watanabe, M. J. Am. Chem. Soc. 2013, 135 (4), 1476. doi: 10.1021/ja309886p

[1] Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087.
[2] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[3] Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976.
[4] Yasong ZHAO,Lijuan ZHANG,Jian QI,Quan JIN,Kaifeng LIN,Dan WANG. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1048-1060.
[5] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[6] Zhihua ZHOU,Shumei XIA,Liangnian HE. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 838-844.
[7] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[8] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[9] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[10] Nagaraju NARAYANAM,Kalpana CHINTAKRINDA,Weihui FANG,Lei ZHANG,Jian ZHANG. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 781-785.
[11] Lina YANG,Li HUANG,Xueyang SONG,Wenxue HE,Yong JIANG,Zhihu SUN,Shiqiang WEI. In situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 762-769.
[12] Dongmei JIANG,Le BO,Ting ZHU,Junbin TAO,Xiaoping YANG. Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 812-817.
[13] Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824.
[14] Yang ZHOU,Zhimin LI,Kai ZHENG,Gao LI. Controlled Synthesis of Au36(SR)24 (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 786-791.
[15] Min ZHU,Manbo LI,Chuanhao YAO,Nan XIA,Yan ZHAO,Nan YAN,Lingwen LIAO,Zhikun WU. PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 792-798.