Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (2): 369-376    DOI: 10.3866/PKU.WHXB201412121
CATALYSIS AND SURFACE SCIENCE     
Adsorption Activities of O, OH, F and Au on Two-Dimensional Ti2C and Ti3C2 Surfaces
YANG Jian-Hui1, ZHANG Shao-Zheng1, JI Jia-Lin2, WEI Shi-Hao3
1. College of Teacher Education, Quzhou University, Quzhou 324000, Zhejiang Province, P. R. China;
2. College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, Zhejiang Province, P. R. China;
3. Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, Zhejiang Province, P. R. China
Download:   PDF(1440KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Two-dimensional Ti2C and Ti3C2 structures are highly stable and have high specific surface areas, and therefore represent promising materials with potential applications as carriers in transition metal catalysis, Li-ion batteries, and hydrogen storage devices. It was envisaged that investigating the surface adsorption activities of Ti2C and Ti3C2 would provide useful information about their surface properties. The results of a firstprinciples study showed that the adsorption energies of OH, O, and F on Ti2C and Ti3C2 surfaces were quite high. By comparing the electronic properties of Ti2C, Ti3C2, Ti(001), and TiC(001), we found that the un-polarized Ti- 3d orbitals were responsible for the high surface adsorption activities of these materials. The high surface adsorption activities of the Ti2C and Ti3C2 materials caused them to be terminated with O, F, and OH surface groups. The surface adsorption energies of the Au particles on the Ti2CO2-2x(OH)2x and Ti3C2O2-2x(OH)2x) surfaces increase as the ratio of OH increased.



Key wordsTwo-dimensional structure      First-principles      Ti2C      Adsorption     
Received: 17 October 2014      Published: 12 December 2014
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (11347138) and Talent Training Funds of Quzhou University, China (BSYJ201311).

Corresponding Authors: YANG Jian-Hui     E-mail: jianhuiyoung@gmail.com
Cite this article:

YANG Jian-Hui, ZHANG Shao-Zheng, JI Jia-Lin, WEI Shi-Hao. Adsorption Activities of O, OH, F and Au on Two-Dimensional Ti2C and Ti3C2 Surfaces. Acta Phys. Chim. Sin., 2015, 31(2): 369-376.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201412121     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I2/369

(1) Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. J. Am. Chem. Soc. 2013, 135, 15966. doi: 10.1021/ja405735d
(2) Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502. doi: 10.1126/science.1241488
(3) Shein, I. R.; Ivanovskii, A. L. Comput. Mater. Sci. 2012, 65, 104. doi: 10.1016/j.commatsci.2012.07.011
(4) Mashtalir, O.; Naguib, M.; Dyatkin, B.; Gogotsi, Y.; Barsoum, M.W. Mater. Chem. Phys. 2013, 139, 147. doi: 10.1016/j.matchemphys.2013.01.008
(5) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306
(6) Mashtalir, O.; Naguib, M.; Mochalin, V.; Dall'Agnese, Y.; Heon, M.; Barsoum, M.; Gogotsi, Y. Nature Commun. 2013, 4, 1716. doi: 10.1038/ncomms2664
(7) Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. ACS Nano 2012, 6, 1322. doi: 10.1021/nn204153h
(8) Tang, Q.; Zhou, Z.; Shen, P.W. J. Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r
(9) Come, J.; Naguib, M.; Rozier, P.; Barsoum, M.W.; Gogotsi, Y.; Taberna, P. L.; Morcrette, M.; Simon, P. J. Electrochem. Soc. 2012, 159, 1368. doi: 10.1149/2.003208jes
(10) Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61. doi: 10.1016/j.elecom.2012.01.002
(11) Peng, Q. M.; Guo, J. X.; Zhang, Q. R.; Xiang, J. Y.; Liu, B. Z.; Zhou, A. G.; Liu, R. P.; Tian, Y. J. J. Am. Chem. Soc. 2014, 136, 4113. doi: 10.1021/ja500506k
(12) Hu, Q. K.; Sun, D. D.;Wu, Q. H.;Wang, H. Y.;Wang, L. B.; Liu, B. Z.; Zhou, A. G.; He, J. L. J. Phys. Chem. A 2013, 117, 14253. doi: 10.1021/jp409585v
(13) Hu, Q. K.;Wang, H. Y.;Wu, Q. H.; Ye, X. T.; Zhou, A. G.; Sun, D. D.;Wang, L. B.; Liu, B. Z.; He, J. L. Int. J. Hydrog. Energy 2014, 39, 10606. doi: 10.1016/j.ijhydene.2014.05.037
(14) Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Adv. Funct. Mater. 2013, 23, 2185. doi: 10.1002/adfm.v23.17
(15) Moussa, S.; Abdelsayed, V.; El-Shall, M. S. Chem. Phys. Lett. 2011, 510, 179.
(16) Song, E. H.;Wen, Z.; Jiang, Q. J. Phys. Chem. C 2011, 115, 3678. doi: 10.1021/jp108978c
(17) Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Nano Lett. 2011, 11, 1087. doi: 10.1021/nl103980h
(18) Gan, L. Y.; Huang, D.; Schwingenschlogl, U. J. Mater. Chem. A 2013, 1, 13672. doi: 10.1039/c3ta12032e
(19) Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M.W.; Gogotsi, Y.; Yu, X.; Nam, K.W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C. J. Am. Chem. Soc. 2014, 136, 6385. doi: 10.1021/ja501520b
(20) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
(21) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
(22) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
(23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
(24) Kresse, G.; Joubert, D. Phys.l Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
(25) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
(26) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
(27) Tang,W.; Sanville, E.; Henkelman, G. J. Phys. -Condes. Matter 2009, 21, 084204. doi: 10.1088/0953-8984/21/8/084204
(28) Li, B.; Yim,W. L.; Zhang, Q.; Chen, L. J. Phys. Chem. C 2010, 114, 3052.
(29) Yang, J. H.; Chen, Y. X.;Wu, L. H.;Wei, S. H. Acta Phys. Sin. 2014, 63, 237301. [杨建辉, 陈言星, 吴丽慧, 韦世豪. 物理学报, 2014, 63, 237301.]
(30) Yang, J. H.; Ji, J. L.; Li, L.;Wei, S. H. Acta Phys. -Chim. Sin. 2014, 30, 1821. [杨建辉, 计嘉琳, 李林, 韦世豪. 物理化学学报, 2014, 30, 1821.] doi: 10.3866/PKU.WHXB201408192

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. Chim. Sin., 2018, 34(3): 296-302.
[3] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[4] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[5] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[6] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[7] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[8] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[9] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[10] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[11] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[12] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[13] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[14] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[15] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.