Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (2): 369-376    DOI: 10.3866/PKU.WHXB201412121
CATALYSIS AND SURFACE SCIENCE     
Adsorption Activities of O, OH, F and Au on Two-Dimensional Ti2C and Ti3C2 Surfaces
YANG Jian-Hui1, ZHANG Shao-Zheng1, JI Jia-Lin2, WEI Shi-Hao3
1. College of Teacher Education, Quzhou University, Quzhou 324000, Zhejiang Province, P. R. China;
2. College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, Zhejiang Province, P. R. China;
3. Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, Zhejiang Province, P. R. China
Download:   PDF(1440KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Two-dimensional Ti2C and Ti3C2 structures are highly stable and have high specific surface areas, and therefore represent promising materials with potential applications as carriers in transition metal catalysis, Li-ion batteries, and hydrogen storage devices. It was envisaged that investigating the surface adsorption activities of Ti2C and Ti3C2 would provide useful information about their surface properties. The results of a firstprinciples study showed that the adsorption energies of OH, O, and F on Ti2C and Ti3C2 surfaces were quite high. By comparing the electronic properties of Ti2C, Ti3C2, Ti(001), and TiC(001), we found that the un-polarized Ti- 3d orbitals were responsible for the high surface adsorption activities of these materials. The high surface adsorption activities of the Ti2C and Ti3C2 materials caused them to be terminated with O, F, and OH surface groups. The surface adsorption energies of the Au particles on the Ti2CO2-2x(OH)2x and Ti3C2O2-2x(OH)2x) surfaces increase as the ratio of OH increased.



Key wordsTwo-dimensional structure      First-principles      Ti2C      Adsorption     
Received: 17 October 2014      Published: 12 December 2014
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (11347138) and Talent Training Funds of Quzhou University, China (BSYJ201311).

Corresponding Authors: YANG Jian-Hui     E-mail: jianhuiyoung@gmail.com
Cite this article:

YANG Jian-Hui, ZHANG Shao-Zheng, JI Jia-Lin, WEI Shi-Hao. Adsorption Activities of O, OH, F and Au on Two-Dimensional Ti2C and Ti3C2 Surfaces. Acta Phys. -Chim. Sin., 2015, 31(2): 369-376.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201412121     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I2/369

(1) Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. J. Am. Chem. Soc. 2013, 135, 15966. doi: 10.1021/ja405735d
(2) Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502. doi: 10.1126/science.1241488
(3) Shein, I. R.; Ivanovskii, A. L. Comput. Mater. Sci. 2012, 65, 104. doi: 10.1016/j.commatsci.2012.07.011
(4) Mashtalir, O.; Naguib, M.; Dyatkin, B.; Gogotsi, Y.; Barsoum, M.W. Mater. Chem. Phys. 2013, 139, 147. doi: 10.1016/j.matchemphys.2013.01.008
(5) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306
(6) Mashtalir, O.; Naguib, M.; Mochalin, V.; Dall'Agnese, Y.; Heon, M.; Barsoum, M.; Gogotsi, Y. Nature Commun. 2013, 4, 1716. doi: 10.1038/ncomms2664
(7) Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. ACS Nano 2012, 6, 1322. doi: 10.1021/nn204153h
(8) Tang, Q.; Zhou, Z.; Shen, P.W. J. Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r
(9) Come, J.; Naguib, M.; Rozier, P.; Barsoum, M.W.; Gogotsi, Y.; Taberna, P. L.; Morcrette, M.; Simon, P. J. Electrochem. Soc. 2012, 159, 1368. doi: 10.1149/2.003208jes
(10) Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61. doi: 10.1016/j.elecom.2012.01.002
(11) Peng, Q. M.; Guo, J. X.; Zhang, Q. R.; Xiang, J. Y.; Liu, B. Z.; Zhou, A. G.; Liu, R. P.; Tian, Y. J. J. Am. Chem. Soc. 2014, 136, 4113. doi: 10.1021/ja500506k
(12) Hu, Q. K.; Sun, D. D.;Wu, Q. H.;Wang, H. Y.;Wang, L. B.; Liu, B. Z.; Zhou, A. G.; He, J. L. J. Phys. Chem. A 2013, 117, 14253. doi: 10.1021/jp409585v
(13) Hu, Q. K.;Wang, H. Y.;Wu, Q. H.; Ye, X. T.; Zhou, A. G.; Sun, D. D.;Wang, L. B.; Liu, B. Z.; He, J. L. Int. J. Hydrog. Energy 2014, 39, 10606. doi: 10.1016/j.ijhydene.2014.05.037
(14) Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Adv. Funct. Mater. 2013, 23, 2185. doi: 10.1002/adfm.v23.17
(15) Moussa, S.; Abdelsayed, V.; El-Shall, M. S. Chem. Phys. Lett. 2011, 510, 179.
(16) Song, E. H.;Wen, Z.; Jiang, Q. J. Phys. Chem. C 2011, 115, 3678. doi: 10.1021/jp108978c
(17) Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Nano Lett. 2011, 11, 1087. doi: 10.1021/nl103980h
(18) Gan, L. Y.; Huang, D.; Schwingenschlogl, U. J. Mater. Chem. A 2013, 1, 13672. doi: 10.1039/c3ta12032e
(19) Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M.W.; Gogotsi, Y.; Yu, X.; Nam, K.W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C. J. Am. Chem. Soc. 2014, 136, 6385. doi: 10.1021/ja501520b
(20) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
(21) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
(22) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
(23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
(24) Kresse, G.; Joubert, D. Phys.l Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
(25) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
(26) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
(27) Tang,W.; Sanville, E.; Henkelman, G. J. Phys. -Condes. Matter 2009, 21, 084204. doi: 10.1088/0953-8984/21/8/084204
(28) Li, B.; Yim,W. L.; Zhang, Q.; Chen, L. J. Phys. Chem. C 2010, 114, 3052.
(29) Yang, J. H.; Chen, Y. X.;Wu, L. H.;Wei, S. H. Acta Phys. Sin. 2014, 63, 237301. [杨建辉, 陈言星, 吴丽慧, 韦世豪. 物理学报, 2014, 63, 237301.]
(30) Yang, J. H.; Ji, J. L.; Li, L.;Wei, S. H. Acta Phys. -Chim. Sin. 2014, 30, 1821. [杨建辉, 计嘉琳, 李林, 韦世豪. 物理化学学报, 2014, 30, 1821.] doi: 10.3866/PKU.WHXB201408192

[1] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[2] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[3] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[4] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 296-302.
[5] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[6] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[7] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[8] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[9] Zhou-Sheng MO,Yu-Cai QIN,Xiao-Tong ZHANG,Lin-Hai DUAN,Li-Juan SONG. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[10] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[11] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[12] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[13] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.
[14] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[15] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.