Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (2): 315-321    DOI: 10.3866/PKU.WHXB201412164
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Supercapacitor Properties of Double-Perovskite La2CoNiO6 Inorganic Nanofibers
WU Yan-Bo, BI Jun, WEI Bin-Bin
College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, P. R. China
Download:   PDF(1028KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A La2CoNiO6 inorganic nanofiber supercapacitor electrode material was successfully prepared from a polyvinylpyrrolidone/lanthanum nitrate-cobalt acetate-nickel acetate (PVP/LCN) precursor by electrostatic spinning. Its surface morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). We found that the fibers were connected through rhombohedral La2CoNiO6 nanoparticles resulting in a linear spatial network structure. The electrochemical performance of the as-prepared inorganic nanofibers was characterized by cyclic voltammetry (CV), chronopotentiograms (CP), and cycle life tests. The results show that the La2CoNiO6 nanofiber electrode material has good capacitor performance. For the three-electrode system the electrode achieved a respectable specific capacitance of 335.0 F·g-1 at 0.25 A·g-1. For the symmetrical two-electrode system the electrode achieved a specific capacitance of 129.1 F·g-1 at the same current density.



Key wordsDouble-perovskite      Electrostatic spinning      Inorganic nanofiber      Supercapacitor      Electrode material     
Received: 05 September 2014      Published: 16 December 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21076028).

Corresponding Authors: WU Yan-Bo     E-mail: wuyanbo_djd@126.com
Cite this article:

WU Yan-Bo, BI Jun, WEI Bin-Bin. Preparation and Supercapacitor Properties of Double-Perovskite La2CoNiO6 Inorganic Nanofibers. Acta Phys. -Chim. Sin., 2015, 31(2): 315-321.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201412164     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I2/315

(1) Xu, L. L.; Zhang, X. H.; Chen, J. H. Acta Phys. -Chim. Sin. 2014, 30 (7), 1274. [徐玲玲, 张小华, 陈金华. 物理化学学报, 2014, 30 (7), 1274.] doi: 10.3866/PKU.WHXB201405044
(2) Wu, H. Y.;Wang, H.W. Acta Phys. -Chim. Sin. 2013, 29 (7), 1501. [吴红英, 王欢文. 物理化学学报, 2013, 29 (7), 1501.] doi: 10.3866/PKU.WHXB201304241
(3) Baran, E. J. Catal. Today 1990, 8 (2), 133. doi: 10.1016/0920-5861(90)87015-U
(4) Vailionis, A.; Boschker, H.; Siemons,W.; Houwman, E. P.; Blank, D. H. A.; Rijnders, G.; Koster, G. Phys. Rev. B 2011, 83(6), 064101.
(5) Baek, S.W.; Kim, J. H.; Bae, J. Solid State Ionics 2008, 179 (27-32), 1570. doi: 10.1016/j.ssi.2007.12.010
(6) Li, Z. F.; Li, G. B.; Sun, J. L.;Wang, Y. X.; You, L. P.; Lin, J. H. Solid State Sci. 2006, 8 (9), 1035. doi: 10.1016/j.solidstatesciences.2005.12.015
(7) Sleight, A.W.; Longo, J.;Ward, R. Inorg. Chem. 1962, 1 (2), 245. doi: 10.1021/ic50002a010
(8) Regaieg, Y.; Delaizir, G.; Herbst, F.; Sicard, L.; Monnier, J.; Montero, D.; Villeroy, B.; Ammar-Merah, S.; Cheikhrouhou, A.; Godart, C.; Koubaa, M. Mater. Lett. 2012, 80, 195. doi: 10.1016/j.matlet.2012.04.046
(9) Rajendran, D. N.; Ravindran Nair, K.; Prabhakar Rao, P.; Sibi, K. S.; Koshy, P.; Vaidyan, V. K. Mater. Lett. 2008, 62 (4), 623.
(10) Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat. Chem. 2011, 3 (7), 546. doi: 10.1038/nchem.1069
(11) Sarma, D. D.; Shanthi, N.; Barman, S. R. Phys. Rev. Lett. 1995, 75 (6), 1126. doi: 10.1103/PhysRevLett.75.1126
(12) Lin, Y. Q.; Chen, X. M.; Liu, X. Q. Solid State Commun. 2009, 149 (19), 784.
(13) Singh, M. P.; Truong, K. D.; Fournier, P. Appl. Phys. Lett. 2007, 91 (4), 042504. doi: 10.1063/1.2762292
(14) Marrero-López, D.; Pena-Martinez, J.; Ruiz-Morales, J. C.; Pérez-Coll, D.; Aranda, M. A. G.; Núñez, P. Mater. Res. Bull. 2008, 43 (8), 2441.
(15) Fan, H. J.;Werner, P.; Zacharias, M. Small 2006, 2 (6), 700.
(16) Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Science 2007, 316 (5825), 729. doi: 10.1126/science.1139105
(17) Hsu, M. C.; Leu, I. C.; Sun, Y. M.; Hon, M. H. J. Solid State Chem. 2006, 179 (5), 1421. doi: 10.1016/j.jssc.2006.01.077
(18) Leng, J.; Li, S.;Wang, Z. S.; Xue, Y. F.; Xu, D. P. Mater. Lett. 2010, 64 (17), 1912. doi: 10.1016/j.matlet.2010.06.005
(19) Yuh, J.; Nino, J. C.; Sigmund,W. M. Mater. Lett. 2005, 59 (28), 3645. doi: 10.1016/j.matlet.2005.07.008
(20) Chen, C. Q.; Li,W.; Cao, C. Y.; Song,W. G. J. Mater. Chem. 2010, 20 (33), 6968. doi: 10.1039/c0jm01320j
(21) Hwang, D. K.; Kim, S.; Lee, J. H.; Hwang, I. S.; Kim, I. D. J. Mater. Chem. 2011, 21 (6), 1959. doi: 10.1039/c0jm02256j
(22) Khomenko, V.; Frackowiak, E.; Beguin, F. Electrochim. Acta 2005, 50 (12), 2499. doi: 10.1016/j.electacta.2004.10.078
(23) Stoller, M. D.; Ruoff, R. S. Energy Environ. Sci. 2010, 3 (9), 1294. doi: 10.1039/c0ee00074d
(24) Stoller, M. D.; Park, S.; Zhu, Y.W.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
(25) Zhang, X. B.; Chen, M. H.; Zhang, X. G.; Li, Q.W. Acta Phys. -Chim. Sin. 2010, 26 (12), 3169. [张校菠, 陈名海, 张校刚, 李清文. 物理化学学报, 2010, 26 (12), 3169.] doi: 10.3866/PKU.WHXB20101203
(26) Li, Y. H.; Huang, K. L.; Yao, Z. F.; Liu, S. Q.; Qing, X. X. Electrochim. Acta 2011, 56 (5), 2140. doi: 10.1016/j.electacta.2010.11.074
(27) Yuan, C. Z.; Xiong, S. L.; Zhang, X. G.; Shen, L. F.; Zhang, F.; Gao, B.; Su, L. H. Nano Res. 2009, 2 (9), 722. doi: 10.1007/s12274-009-9079-7
(28) Kim, G.;Wang, S.; Jacobson, A. J.; Reimus, L.; Brodersenb, P.; Mims, C. A. J. Mater. Chem. 2007, 17 (24), 2500. doi: 10.1039/b618345j
(29) Taskin, A. A.; Lavrov, A. N.; Ando, Y. Appl. Phys. Lett. 2005, 86(9), 091910. doi: 10.1063/1.1864244
(30) Maignan, A.; Martin, C.; Pelloquin, D.; Nguyen, N.; Raveau, B. J. Solid State Chem. 1999, 142 (2), 247. doi: 10.1006/jssc.1998.7934

[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[3] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[5] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[6] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[7] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[8] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[9] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[10] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[11] Meng SUN,Jing-Hong LI. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 198-210.
[12] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1593-1603.
[13] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.
[14] Yong-Fang WANG,Song-Lin ZUO. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 481-492.
[15] You-Cheng LIN,Xin-Xian ZHONG,Han-Xing HUANG,Hong-Qiang WANG,Qi-Peng FENG,Qing-Yu LI. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 474-480.