Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (2): 360-368    DOI: 10.3866/PKU.WHXB201412243
Preparation of Heat-Resistant, Core/Shell Nanostructured TiO2/SiO2 Composite Aerogels and Their Photocatalytic Properties
ZU Guo-Qing, SHEN Jun, WANG Wen-Qin, ZOU Li-Ping, XU Wei-Wei, ZHANG Zhi-Hua
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P. R. China
Download:   PDF(1109KB) Export: BibTeX | EndNote (RIS)      


Core/shell nanostructured monolithic TiO2/SiO2 composite aerogels were prepared by the anilineacetone in situ water formation sol-gel method. Titanium(IV) n-butoxide was used as a precursor followed by supercritical modification with partially hydrolyzed titanium alkoxide and tetraethoxysilane during ethanol supercritical fluid drying. The obtained composite aerogel showed excellent mechanical strength with a Young's modulus of 4.5 MPa. The composite aerogel exhibited excellent heat resistance. After heat treatment at 1000 ℃ its linear shrinkage decreased from 31% for the TiO2 aerogel to 10% for the composite aerogel. The specific surface area increased from 31 m2 ·g-1 for the TiO2 aerogel to 143 m2 ·g-1 for the composite aerogel. The composite aerogel exhibited excellent photocatalytic performance during the degradation of methylene blue after heat treatment at 1000 ℃. Its excellent photocatalytic property is attributed to its high specific surface area and the small particle size of the composite aerogel after heat treatment at 1000 ℃. The enhanced heat resistance, mechanical strength, and photocatalytic performance makes the obtained core/shell nanostructured TiO2/SiO2 composite aerogel a promising candidate for photocatalytic applications.

Key wordsTiO2/SiO2 composite aerogel      Core/shell nanostructure      In situ water formation      Supercritical modification      Heat resistance      Photocatalysis     
Received: 13 November 2014      Published: 24 December 2014
MSC2000:  O648  

The project was supported by the National Natural Science Foundation of China (51172163, U1230113), National Key Technology R&D Program of China (2013BAJ01B01), National High Technology Research and Development Program of China (863) (2013AA031801), and Shanghai Committee of Science and Technology (11nm0501600, 12nm0503001).

Corresponding Authors: ZU Guo-Qing, SHEN Jun     E-mail:;
Cite this article:

ZU Guo-Qing, SHEN Jun, WANG Wen-Qin, ZOU Li-Ping, XU Wei-Wei, ZHANG Zhi-Hua. Preparation of Heat-Resistant, Core/Shell Nanostructured TiO2/SiO2 Composite Aerogels and Their Photocatalytic Properties. Acta Phys. Chim. Sin., 2015, 31(2): 360-368.

URL:     OR

(1) Zu, G. Q.; Shen, J.; Zou, L. P.;Wang,W. Q.; Lian, Y.; Zhang, Z. H.; Du, A. Chem. Mater. 2013, 25, 4757. doi: 10.1021/cm402900y
(2) Zu, G. Q.; Shen, J.; Zou, L. P.;Wang,W. Q.; Lian, Y.; Zhang, Z. H. J. Inorg. Mater. 2014, 29, 417. [祖国庆, 沈军, 邹丽萍,王文琴, 连娅, 张志华. 无机材料学报, 2014, 29, 417.]
(3) Xu,W.W.; Du, A.; Tang, J.; Chen, K.; Zou, L. P.; Zhang, Z. H.; Shen, J.; Zhou, B. Acta Phys. -Chim. Sin. 2012, 28, 2958. [许维维, 杜艾, 唐俊, 陈珂, 邹丽萍, 张志华, 沈军, 周斌. 物理化学学报, 2012, 28, 2958.] doi: 10.3866/PKU.WHXB201209282
(4) Zu, G. Q.; Shen, J.;Wei, X. Q.; Ni, X. Y.; Zhang, Z. H.;Wang, J. C.; Liu, G.W. J. Non-Cryst. Solids 2011, 357, 2903. doi: 10.1016/j.jnoncrysol.2011.03.031
(5) Kang, T. S.; Smith, A. P.; Taylor, B. E.; Michael, F. D. Nano Lett. 2009, 9, 601. doi: 10.1021/nl802818d
(6) Ismail, A. A.; Bahnemann, D.W.; Robben, L.; Yarovyi, V.; Wark, M. Chem. Mater. 2010, 22, 108. doi: 10.1021/cm902500e
(7) Li, H.; Bian, Z.; Zhu, J.; Zhang, D.; Li, G.; Huo, Y.; Li, H.; Lu, Y. J. Am. Chem. Soc. 2007, 129, 8406. doi: 10.1021/ja072191c
(8) Zu, G. Q.; Shen, J.;Wang,W. Q.; Zou, L. P.; Lian, Y.; Zhang, Z. H.; Liu, B.; Zhang, F. Chem. Mater. 2014, 26, 5761. doi: 10.1021/cm502886t
(9) Stengl, V.; Bakardjieva, S.; Subrt, J.; Szatmary, L. Microporous Mesoporous Mat. 2006, 91, 1. doi: 10.1016/j.micromeso.2005.10.046
(10) Yao, B.; Zhang, Y.; Shi, H.; Zhang, L. Chem. Mater. 2000, 12, 3740. doi: 10.1021/cm990674c
(11) Shibata, H.; Ogura, T.; Mukai, T.; Ohkubo, T.; Sakai, H.; Abe, M. J. Am. Chem. Soc. 2005, 127, 16396. doi: 10.1021/ja0552601
(12) Luo, H.;Wang, C.; Yan, Y. Chem. Mater. 2003, 15, 3841. doi: 10.1021/cm0302882
(13) Baiju, K. V.; Shukla, S.; Sandhya, K. S.; James, J.;Warrier, K. G. K. J. Phys. Chem. C 2007, 111, 7612. doi: 10.1021/jp070452z
(14) Wang, X.; Yu, J. C.; Ho, C.; Hou, Y.; Fu, X. Langmuir 2005, 21, 2552. doi: 10.1021/la047979c
(15) Gan, L. H.; Chen, L.W.; Xu, Z. J. J. Inorg. Mater. 2001, 16, 846. [甘礼华, 陈龙武, 徐子颉. 无机材料学报, 2001, 16, 846.]
(16) Hu, J. G.; Chen, Q. Y.; Li, J.; Lu, B.; Li, P. J. J. Inorg. Mater. 2009, 24, 685. [胡久刚, 陈启元, 李洁, 卢斌, 李鹏举. 无机材料学报, 2009, 24, 685.] doi: 10.3724/SP.J.1077.2009.00685
(17) Stallings,W. E.; Lamb, H. H. Langmuir 2003, 19, 2989. doi: 10.1021/la020760i
(18) Wan, Y.; Ma, J.; Zhou,W.; Zhu, Y.; Song, X.; Li, H. Appl. Catal. A: Gen. 2004, 277, 55. doi: 10.1016/j.apcata.2004.08.022
(19) Zelenak, V.; Hornebecq, V.; Mornet, S.; Schaf, O.; Llewellyn, P. Chem. Mater. 2006, 18, 3184. doi: 10.1021/cm051608f
(20) Torma, V.; Peterlik, H.; Bauer, U.; Rupp,W.; Husing, N.; Bernstorff, S.; Steinhart, M.; Goerigk, G.; Schubert, U. Chem. Mater. 2005, 17, 3146. doi: 10.1021/cm047996n
(21) Mariscal, R.; Lopez-Granados, M.; Fierro, J. L. G.; Sotelo, J. L.; Martos, C.; Grieken, R. V. Langmuir 2000, 16, 9460. doi: 10.1021/la000876j
(22) Budnyk, A.; Damin, A.; Bordiga, S.; Zecchina, A. J. Phys. Chem. C 2012, 116, 10064. doi: 10.1021/jp3012798
(23) Subramanian, V.; Ni, Z.; Seebauer, E. G.; Masel, R. I. Ind. Eng. Chem. Res. 2006, 45, 3815. doi: 10.1021/ie051175q
(24) Campbell, L. K.; Na, B. K.; Ko, E. I. Chem. Mater. 1992, 4, 1329. doi: 10.1021/cm00024a037
(25) Mohite, D. P.; Larimore, Z. J.; Lu, H.; Mang, J. T.; Sotiriou-Leventis, C.; Leventis, N. Chem. Mater. 2012, 24, 3434. doi: 10.1021/cm3017648
(26) Huang, H.; Liu, X.; Huang, J. Mater. Res. Bull. 2011, 46, 1814. doi: 10.1016/j.materresbull.2011.07.045

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[15] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2841-2870.