Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (3): 519-526    DOI: 10.3866/PKU.WHXB201412291
Preparation and Photocatalytic Activity of Mixed Phase TiO2-Graphene Composites
YU Jian-Hua1, FAN Min-Guang1,2, LI Bin1, DONG Li-Hui1, ZHANG Fei-Yue1
1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China;
2. Guangxi Key Laboratory Petrochemical Rescource Processing and Process Intensification Technology, Nanning 530004, P. R. China
Download:   PDF(1221KB) Export: BibTeX | EndNote (RIS)      


A series of composites consisting of anatase-rutile TiO2 and graphene (TrG) were synthesized by a hydrothermal route. The influence of the amount of graphene oxide on the photocatalytic activity during the degradation of methyl blue was studied. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) specific surface area measurements. The results show that as-prepared TiO2 formed in the anatase and rutile phase with a bar structure and it dispersed uniformly over the surface of the graphene sheets. The composites possess higher catalytic activity because of the strong absorption capacity of graphene, the establishment of heterojunctions between rutile and anatase TiO2, the remarkable electrical transport between TiO2 and graphene and the high specific surface areas. The photodegradation performance of methyl blue by the TrG composites under UV light was studied. Our results indicate that the photocatalytic activities of titanium dioxide-graphene composites were higher than those of pure TiO2. We also found that the TrG composites prepared with a loading of 0.8%(mass fraction, w) graphene oxide had the best photocatalytic activity.

Key wordsMixed phase TiO2      Heterojunction      Graphene      Photoelectron transfer      Hydrothermal route      Photocatalysis     
Received: 27 October 2014      Published: 29 December 2014
MSC2000:  O643  

The project was supported by the National Key Basic Research Program of China (973) (2012CB21500203) and Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, China (2013K009, 2013Z001).

Corresponding Authors: FAN Min-Guang     E-mail:
Cite this article:

YU Jian-Hua, FAN Min-Guang, LI Bin, DONG Li-Hui, ZHANG Fei-Yue. Preparation and Photocatalytic Activity of Mixed Phase TiO2-Graphene Composites. Acta Phys. -Chim. Sin., 2015, 31(3): 519-526.

URL:     OR

(1) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.; Zhang,W. K. Acta Phys. -Chim. Sin. 2013, 29, 403. [甘永平,秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29, 403.] doi: 10.3866/PKU.WHXB201211022
(2) Liu, S.W.; Yu, J. G.; Jaroniec, J. J. Am. Chem. Soc. 2010, 132, 11914. doi: 10.1021/ja105283s
(3) Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. J. Am. Chem. Soc. 2011, 133, 16414. doi: 10.1021/ja207826q
(4) Yu, X. M.; Kim, B.; Kim, Y. K. ACS Catal. 2013, 3, 2479. doi: 10.1021/cs4005776
(5) Liu, S.W.; Liu, C.;Wang,W. G.; Cheng, B.; Yu, J. G. Nanoscale 2012, 4, 3193. doi: 10.1039/c2nr30427a
(6) Long, R.; English, N. J.; Prezhdo, O. V. J. Am. Chem. Soc. 2012, 134, 14238.
(7) Zhou, J.; Song, B.; Zhao, G. L.; Han, G. R. Nanoscale Res. Lett. 2012, 7, 217. doi: 10.1186/1556-276X-7-217
(8) Zhao, B.; Lin, L.; He, D. N. J. Mater. Chem. A 2013, 1, 1659. doi: 10.1039/c2ta00755j
(9) Zhao, M. L.; Li, L. P.; Lin, H. F.; Yang, L. S; Li, G. S. Chem. Commun. 2013, 49, 7046. doi: 10.1039/c3cc43416h
(10) Jiao, Y. C.; Zhao, B.; Chen, F; Zhang, J. L. CrystEngComm 2011, 13, 4167. doi: 10.1039/c0ce00932f
(11) Li, K.; Xu, J. L.; Shi,W. Y.;Wang, Y. B.; Peng, T. Y. J. Mater. Chem. A 2014, 2, 1886. doi: 10.1039/c3ta13597g
(12) Zhao, B.; Chen, F.; Jiao, Y. C.; Yang, H. Y.; Zhang, J. L. Journal of Molecular Catalysis A: Chemical 2011, 348, 114. doi: 10.1016/j.molcata.2011.08.015
(13) Yanagisawa, K.; Ovenstone, J. J. Phys. Chem. B 1999, 103, 7781. doi: 10.1021/jp990521c
(14) Zhang, J.; Yan, S.; Fu, L.;Wang, F.; Yuan, M. Q.; Luo, G. X.; Xu, Q.;Wang, X.; Li, C. C. J. Catal. 2011, 32, 983.
(15) Kandiel, T. A.; Dillert, R.; Feldhoff, A.; Bahnemann, D.W. J. Phys. Chem. C 2010, 114, 4909.
(16) Zhang, J. H.; Xiao, X.; Nan, J. M. J. Hazard. Mater. 2010, 176, 617. doi: 10.1016/j.jhazmat.2009.11.074
(17) Romero-Gomez, P.; Borras, A.; Barranco. A.; Espinos, J. P.; Gonzalez-Elipe, A. R. Chem. Phys. Chem. 2011, 12, 191.
(18) Zhang, X. R.; Lin, Y. H.; He, D. Q.; Zhang, J. F.; Fan, Z. Y.; Xie, T. F. Chem. Phys. Lett. 2011, 504, 71. doi: 10.1016/j.cplett.2011.01.060
(19) Deak, P.; Aradi, B.; Frauenheim, T. J. Phys. Chem. C 2011, 115, 3443. doi: 10.1021/jp1115492
(20) Mahshid, S.; Askari, M.; Sasani Ghamsari, M.; Afshar, N.; Lahuti, S. J. Alloy. Compd. 2009, 478, 586. doi: 10.1016/j.jallcom.2008.11.094
(21) Yan, M. C.; Chen, F.; Zhang, J. L.; Masakazu, A. J. Phys. Chem. B 2005, 109, 8673. doi: 10.1021/jp046087i
(22) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303. doi: 10.1021/nn1024219
(23) Huang, Q.W.; Tian, S. Q.; Zeng, D.W.;Wang, X. X.; Song,W. L.; Li, Y. Y.; Xiao,W.; Xie, C. S. ACS Catal. 2013, 3, 1477. doi: 10.1021/cs400080w
(24) Zhang, Y. P.; Pan, C. X. J. Mater. Sci. 2011, 46, 2622. doi: 10.1007/s10853-010-5116-x
(25) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu.W.; Tour, J. M. ACS Nano 2010, 4, 4806. doi: 10.1021/nn1006368
(26) Cote, L. J.; Kim, F.; Huang, J. X. J. Am. Chem. Soc. 2009, 131, 1043. doi: 10.1021/ja806262m
(27) Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2, 1487. doi: 10.1021/nn800251f
(28) Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y. M.; Dou, S. X. J. Am. Chem. Soc. 2011, 133, 19314. doi: 10.1021/ja208468d
(29) Ma,W. S.; Zhou, J.W.; Cheng, S. X. Journal of Chemical Engineering of Chinese Universities 2010, 24, 719.
(30) Tong, X. C.;Wang, J.; Zhang, J. Guangzhou Chemical Industry 2012, 40, 4. [童小翠, 王静, 张瑾. 广州化工, 2012, 40, 4.]
(31) Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J. ACS Catal. 2012, 2, 949. doi: 10.1021/cs200621c
(32) Tao, H. C.; Fan, L. Z.; Yan, X. Q.; Qu, X. H. Electrochim. Acta 2012, 69, 328. doi: 10.1016/j.electacta.2012.03.022
(33) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M. Adv. Funct. Mater. 2011, 21, 1717. doi: 10.1002/adfm.201002295
(34) Zhang, Z. Y.; Xiao, F.; Guo, Y. L.;Wang, S.; Liu, Y. Q. ACS Appl. Mater. 2013, 5, 2227. doi: 10.1021/am303299r
(35) Wang, J. Q.; Xin, B. F.; Yu, H. T.; Xie, Y. T.; Zhao, B.; Fu, H. G. Chem. J. Chin. Univ. 2003, 24, 1237. [王建强, 辛柏福,于海涛, 谢玉涛, 赵冰, 付宏刚. 高等学校化学学报, 2003, 24, 1237.]
(36) Long, M. C.; Qin, Y. L.; Chen, C.; Guo, X. Y.; Tan, B. H.; Cai, W. M. J. Phys. Chem. C 2013, 117, 16734. doi: 10.1021/jp4058109
(37) Pu, X. P.; Zhang, D. F.; Gao, Y. Y.; Shao, X.; Ding, G. Q.; Li, S. S.; Zhao, S. P. J. Alloy. Compd. 2013, 551, 382. doi: 10.1016/j.jallcom.2012.11.028
(38) Etacheri, V.; Yourey, J. E.; Bartlett, B. M. ACS Nano 2014, 8, 1491. doi: 10.1021/nn405534r
(39) Wang, Y. J.; Li, H. X.; Ji, L.; Liu, X. H.;Wu, Y. X.; Lv, Y. H.; Fu, Y. Y.; Zhou, H. D.; Chen, J. M. J. Phys. D: Appl. Phys.2012, 45, 295301. doi: 10.1088/0022-3727/45/29/295301
(40) Scanlon, D. O.; Dunnill, C.W.; Buckeridge, J. Nature Materials 2013, 12, 798. doi: 10.1038/nmat3697
(41) Zhang, Y. L.; Gan, H. H.; Zhang, G. K. Chem. Eng. J. 2011, 172, 936. doi: 10.1016/j.cej.2011.07.005

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chang HE,Jianhui HOU. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1202-1210.
[4] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[5] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[6] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[7] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[8] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[9] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[10] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[11] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[12] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[13] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[14] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[15] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.