Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (3): 457-466    DOI: 10.3866/PKU.WHXB201501093
ELECTROCHEMISTRY AND NEW ENERGY     
Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction
LI Wen-You1, HE Yun-Qiu1,2, LI Yi-Ming1
1. School of Material Science and Engineering, Tongji University, Shanghai 200092, P. R. China;
2. Key Laboratry of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092, P. R. China
Download:   PDF(3320KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

This article details a quick and simple method to prepare graphene oxide (GO) film and tune its energy level by adjusting the oxygen content. GO films with different layers were fabricated on fluorine-doped SnO2 (FTO) conductive glass using the anodic electrophoretic deposition process. The degree of oxidation was regulated by cathodic electrochemical reduction. The as-prepared GO films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible absorption (UV-Vis) spectroscopy, X-ray photoelectron spectra (XPS), Raman spectroscopy and electrochemical analysis. The number of GO layers was varied between 77 and 570 by controlling the electrophoretic deposition time (from 20 to 350 s). Changing the degree of oxidation caused the optical gap of GO to vary between 1.0 and 2.7 eV, and also impacted the edge of the conduction band and the Fermi energy for the sample. As a p-type semiconductor, a p-n junction can be formed between reduced GO and FTO. Under simulated sunlight irradiance of 100 mW·cm-2, the GO film with a deposition time of 300 s and reduction time of 120 s produced the highest photocurrent density of 5.25×10-8 A·cm-2.



Key wordsGraphene oxide      Electrochemistry      Film      Energy level      Photocurrent density     
Received: 30 October 2014      Published: 09 January 2015
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51172162).

Corresponding Authors: HE Yun-Qiu     E-mail: heyunqiu@tongji.edu.cn
Cite this article:

LI Wen-You, HE Yun-Qiu, LI Yi-Ming. Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction. Acta Phys. Chim. Sin., 2015, 31(3): 457-466.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201501093     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I3/457

(1) Brodie, B. C. Phil. Trans. R. Soc. Lond. 1859, 149, 249. doi: 10.1098/rstl.1859.0013
(2) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39 (1), 228. doi: 10.1039/b917103g
(3) Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nat. Chem. 2010, 2 (12), 1015. doi: 10.1038/nchem.907
(4) Ito, J.; Nakamura, J.; Natori, A. J. Appl. Phys. 2008, 103 (11), 113712-1. doi: 10.1063/1.2939270
(5) Boukhvalov, D.W.; Katsnelson, M. I. J. Am. Chem. Soc. 2008, 130 (32), 10697. doi: 10.1021/ja8021686
(6) Dutta, M.; Sarkar, S.; Ghosh, T.; Basak, D. J. Phys. Chem. C 2012, 116 (38), 20127. doi: 10.1021/jp302992k
(7) Miao, X.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. Nano Lett. 2012, 12 (6), 2745. doi: 10.1021/nl204414u
(8) Hasegawa, M.; Hirayama, Y.; Ohno, Y.; Maehashi, K.; Matsumoto, K. Jpn. J. Appl. Phys. 2014, 53 (5S1), 05FD05.
(9) Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C.W.; Chhowalla, M. Adv. Mater. 2010, 22 (4), 505. doi: 10.1002/adma.v22:4
(10) Gan, Z.; Xiong, S.;Wu, X.; Xu, T.; Zhu, X.; Gan, X.; Guo, J.; Shen, J.; Sun, L.; Chu, P. K. Adv. Opt. Mater. 2013, 1 (12), 926. doi: 10.1002/adom.v1.12
(11) Yeh, T. F.; Chan, F. F.; Hsieh, C. T.; Teng, H. J. Phys. Chem. C 2011, 115 (45), 22587. doi: 10.1021/jp204856c
(12) Mathkar, A.; Tozier, D.; Cox, P.; Ong, P.; Galande, C.; Balakrishnan, K.; Leela Mohana Reddy, A.; Ajayan, P. M. J. Phys. Chem. Lett. 2012, 3 (8), 986. doi: 10.1021/jz300096t
(13) Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H. Adv. Funct. Mater. 2009, 19 (12), 1987. doi: 10.1002/adfm.v19:12
(14) Pei, S.; Zhao, J.; Du, J.; Ren,W.; Cheng, H. M. Carbon 2010, 48 (15), 4466. doi: 10.1016/j.carbon.2010.08.006
(15) Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Nat. Chem. 2010, 2 (7), 581. doi: 10.1038/nchem.686
(16) Chen, C. M.; Huang, J. Q.; Zhang, Q.; Gong,W. Z.; Yang, Q. H.;Wang, M. Z.; Yang, Y. G. Carbon 2012, 50 (2), 659. doi: 10.1016/j.carbon.2011.09.022
(17) An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. J. Phys. Chem. Lett. 2010, 1 (8), 1259. doi: 10.1021/jz100080c
(18) Harima, Y.; Setodoi, S.; Imae, I.; Komaguchi, K.; Ooyama, Y.; Ohshita, J.; Mizota, H.; Yano, J. Electrochim. Acta 2011, 56 (15), 5363. doi: 10.1016/j.electacta.2011.03.117
(19) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu,W.; Tour, J. M. ACS Nano 2010, 4 (8), 4806. doi: 10.1021/nn1006368
(20) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29 (8), 1681. [李乐, 贺蕴秋,储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29 (8), 1681.] doi: 10.3866/PKU.WHXB201305223
(21) Akhavan, O. ACS Nano 2010, 4 (7), 4174.
(22) Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Adv. Funct. Mater. 2009, 19 (16), 2577.
(23) Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Phys. Chem. Chem. Phys. 2007, 9 (11), 1276.
(24) Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães Paniago, R.; Pimenta, M. A. Appl. Phys. Lett. 2006, 88 (16), 163106.
(25) Esmaeili, A.; Entezari, M. H. J. Colloid Interface Sci. 2014, 432, 19.
(26) Wang, K. P.; Teng, H. Phys. Chem. Chem. Phys. 2009, 11 (41), 9489. doi: 10.1039/b912672d
(27) Gagne, R. R.; Koval, C. A.; Lisensky, G. C. Inorg. Chem. 1980, 19 (9), 2854. doi: 10.1021/ic50211a080
(28) Zhang, X. Y.; Sun, M. X.; Sun, Y. J.; Li, J.; Song, P.; Sun, T.; Cui, X. L. Acta Phys. -Chim. Sin. 2011, 27 (12), 2831. [张晓艳, 孙明轩, 孙钰珺, 李靖, 宋鹏, 孙通, 崔晓莉. 物理化学学报, 2011, 27 (12), 2831.] doi: 10.3866/PKU.WHXB20112831
(29) Wang, J. X.;Wang, K. Z.; Yang, H. Q.; Huang, Z. Acta Chim. Sin. 2011, 69 (21), 2539. [王纪学, 王科志, 杨洪强, 黄喆.化学学报, 2011, 69 (21), 2539.]

[1] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[2] WANG Li, LU Dan-Feng, GAO Ran, CHENG Jin, ZHANG Zhe, QI Zhi-Mei. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1223-1229.
[3] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[4] FAN Zhi-Bo, GONG Xiao-Qing, LU Dan-Feng, GAO Ran, QI Zhi-Mei. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1001-1009.
[5] LIU Dan-Yang, WANG Wan-Luo, XU Shou-Hong, LIU Hong-Lai. Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface[J]. Acta Phys. Chim. Sin., 2017, 33(4): 836-844.
[6] JIANG Jiang-Min, NIE Ping, DONG Sheng-Yang, WU Yu-Ting, ZHANG Xiao-Gang. Effect of Pre-Punched Current Collector for Lithiation on the Electrochemical Performance of Lithium-Ion Capacitor[J]. Acta Phys. Chim. Sin., 2017, 33(4): 780-786.
[7] RUAN Yi-Fan, ZHANG Nan, ZHU Yuan-Cheng, ZHAO Wei-Wei, XU Jing-Juan, CHEN Hong-Yuan. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Phys. Chim. Sin., 2017, 33(3): 476-485.
[8] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[9] YI Qing-Hua, ZHAO Jie, LOU Yan-Hui, ZOU Gui-Fu, LIU Zhong-Fan. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Phys. Chim. Sin., 2017, 33(2): 314-328.
[10] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(2): 435-440.
[11] WU Hai-Fei, CHEN Yao, XU Shan-Hu, YAN Yong-Hong, SI Jian-Xiao, TAN Yong-Sheng. Molecular Beam Epitaxy Growth and Surface Structural Characteristics of PbTe(111) Thin Film[J]. Acta Phys. Chim. Sin., 2017, 33(2): 419-425.
[12] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2523-2531.
[13] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[14] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[15] SONG Er-Long, LAN Lin-Feng, LIN Zhen-Guo, SUN Sheng, SONG Wei, LI Yu-Zhi, GAO Pei-Xiong, ZHANG Peng, PENG Jun-Biao. Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2092-2098.