Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (3): 540-544    DOI: 10.3866/PKU.WHXB201501131
Improved Photocatalytic Degradation of Phenol over β-Bi2O3 Modified Bi2WO6 and Possible Mechanism
LI Xiao-Jin, SHENG Jia-Yi, CHEN Hai-Hang, XU Yi-Ming
State Key Laboaratory of Silicon, Departement of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
Download:   PDF(818KB) Export: BibTeX | EndNote (RIS)      


In this study, a series of Bi2O3-containing Bi2WO6 catalysts were prepared by a simple mixing method. We used the oxidation of phenol in water under UV light as a model reaction, and found that as the amount of Bi2O3 in the mixture increased, its photocatalytic activity increased, and then started to decrease. A maximum activity was observed with the catalyst containing 12.5% (mass fraction, w) of Bi2O3, about 4 times that of Bi2WO6. Solid characterization revealed that the composite was a mixture of β-Bi2O3 and Bi2WO6. The water oxidation photocurrent over the β-Bi2O3/Bi2WO6 thin film electrode was much larger than the sum of the photocurrents of the β-Bi2O3 and Bi2WO6 thin film electrodes. It is proposed that there is a valence hole transfer from Bi2WO6 to β-Bi2O3, which improves the charge separation efficiency, and consequently increases the rate of phenol degradation.

Key wordsBismuth oxide      Bismuth tungstate      Photocatalysis      Charge transfer      Organic degradation     
Received: 30 October 2014      Published: 13 January 2015
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21377110) and National Key Basic Research Program of China (973) (2011CB936003).

Corresponding Authors: XU Yi-Ming     E-mail:
Cite this article:

LI Xiao-Jin, SHENG Jia-Yi, CHEN Hai-Hang, XU Yi-Ming. Improved Photocatalytic Degradation of Phenol over β-Bi2O3 Modified Bi2WO6 and Possible Mechanism. Acta Phys. -Chim. Sin., 2015, 31(3): 540-544.

URL:     OR

(1) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
(2) Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32, 33. doi: 10.1016/j.progsolidstchem.2004.08.001
(3) Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Phys. Chem. C 2007, 111, 5259.
(4) Amano, F.; Nogami, K.; Abe, R.; Ohtani, B. J. Phys. Chem. C 2008, 112, 9320. doi: 10.1021/jp801861r
(5) Zhang, L. S.;Wang,W. Z.; Chen, Z. G.; Zhou, L.; Xu, H. L.; Zhu,W. J. Mater. Chem. 2007, 17, 2526. doi: 10.1039/b616460a
(6) Sun, S. M.;Wang,W. Z.; Zhang, L. J. Phys. Chem. C 2012, 116, 19413. doi: 10.1021/jp306332x
(7) Fu, H. B.; Pan, C. S.; Yao,W. Q.; Zhu, Y. F. J. Phys. Chem. B 2005, 109, 22432. doi: 10.1021/jp052995j
(8) Sheng, J. Y.; Li, X. J.; Xu, Y. M. ACS Catal. 2014, 4, 732. doi: 10.1021/cs400927w
(9) Sheng, J. Y.; Li, X. J.; Xu, Y. M. Acta Phys. -Chim. Sin. 2014, 30, 508. [盛珈怡, 李晓金, 许宜铭. 物理化学学报, 2014, 30, 508.] doi: 10.3866/PKU.WHXB201312302
(10) Ge, M.; Li, Y. F.; Liu, L.; Zhou, Z.; Chen,W. J. Phys. Chem. C 2011, 115, 5220. doi: 10.1021/jp108414e
(11) Gui, M. S.; Zhang,W. D. J. Phys Chem. Solids 2012, 73, 1342. doi: 10.1016/j.jpcs.2012.06.009
(12) Li, X. N.; Huang, R. K.; Hu, Y. H.; Chen, Y. J.; Liu,W. J.; Yuan, R. S.; Li, Z. H. Inorg. Chem. 2012, 51, 6245. doi: 10.1021/ic300454q
(13) Wang, H. L.; Li, S. J.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Zou, R. J.; Xu, K. B.; Song, G. S.; Zhao, H. H.; Yang, J. M.; Liu, J. S. CrystEngComm 2013, 15, 9011. doi: 10.1039/c3ce41447g
(14) Li, Z. Q.; Chen, X. T.; Xue, Z. L. J. Colloid Interface Sci. 2013, 394, 69. doi: 10.1016/j.jcis.2012.12.002
(15) Gui, M. S.; Zhang,W. D.; Su, Q. X.; Chen, C. H. J. Solid State Chem. 2011, 184, 1977. doi: 10.1016/j.jssc.2011.05.057
(16) Gui, M. S.; Zhang,W. D. Nanotechnology 2011, 22, 265601. doi: 10.1088/0957-4484/22/26/265601
(17) Saison, T.; Chemin, N.; Chaneac, C.; Durupthy, O.; Ruaux, V.; Mariey, L.; Mauge, F.; Beaunier, P.; Jolivet, J. P. J. Phys. Chem. C 2011, 115, 5657. doi: 10.1021/jp109134z
(18) Hou, J. G.; Yang, C.;Wang, Z.; Zhou,W.; Jiao, S. Q.; Zhu, H. M. Appl. Catal. B 2013, 142 -143, 504.
(19) Timonah, N. S.; Yang, C. H.; Yu, Y.; Niu, Y. H.; Sun, L. Curr. Appl. Phys. 2010, 10, 1372. doi: 10.1016/j.cap.2010.04.006
(20) Sun, Q.; Xu, Y. M. J. Phys. Chem. C 2010, 114, 18911. doi: 10.1021/jp104762h
(21) Cong, S.; Xu, Y. M. J. Phys. Chem. C 2011, 115, 21161. doi: 10.1021/jp2055206
(22) Chen, H. H.; Leng,W. H.; Xu, Y. M. J. Phys. Chem. C 2014, 118, 9982. doi: 10.1021/jp502616h
(23) Leng,W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C, N. J. Phys. Chem. B 2005, 109, 15008. doi: 10.1021/jp051821z
(24) Cheng, X. F.; Leng,W. H.; Liu, D. P.; Xu, Y. M.; Zhang, J. Q.; Cao, C. N. J. Phys. Chem. C 2008, 112, 8725. doi: 10.1021/jp7097476
(25) Fei, H.; Leng,W. H.; Li, X.; Cheng, X. F.; Xu, Y. M.; Zhang, J. Q.; Cao, C. N. Environ. Sci. Technol. 2011, 45, 4532. doi: 10.1021/es200574h

[1] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[2] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[3] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[4] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[5] Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU,Zhong-Qun TIAN. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[6] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[7] Yi WANG,Nan-Fang JIA,Sheng-Li QI,Guo-Feng TIAN,De-Zhen WU. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2227-2236.
[8] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[9] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[10] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[11] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[12] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[13] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[14] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[15] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.