Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (3): 576-582    DOI: 10.3866/PKU.WHXB201501201
Optical and Electrical Properties of CH3NH3PbI3 Perovskite Thin Films Transformed from PbO-PbI2 Hybrid Films
DING Xu-Kun, LI Xiao-Min, GAO Xiang-Dong, ZHANG Shu-De, HUANG Yu-Di, LI Hao-Ran
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
Download:   PDF(1203KB) Export: BibTeX | EndNote (RIS)      


Organic-inorganic halide perovskites have been shown to be outstanding photovoltaic materials, achieving remarkably high power conversion efficiency (15%) of sunlight to electricity within the past 4 years. The controllable synthesis of organic- inorganic halide perovskites is fundamental to their applications in photovoltaic devices. Here we explore a novel strategy to prepare a typical halide peroskite CH3NH3PbI3 by transforming PbO-PbI2 hybrid materials. CH3NH3PbI3 thin films were deposited on glass substrates by reacting ultrasonic-assisted successive ionic layer adsorption and reaction (SILAR)-derived PbO-PbI2 hybrid films with CH3NH3I vapor at 110 ℃. The microstructure and crystallinity of the films, together with the optical and electrical properties were characterized. Results show that CH3NH3PbI3 thin films possess perovskite crystal structure and uniform surface morphology with grain size up to 400 nm. In the visible band, CH3NH3PbI3 thin films showed low transmittance (below 10%), with a band gap of 1.58 eV. The surface resistivity of CH3NH3PbI3 thin films was as high as 1000 MΩ, indicating the dielectric nature of obtained CH3NH3PbI3 films, with a dielectric constant of εr(100 Hz)=155 on low frequency. The current work opens an effective route toward high quality organicinorganic halide perovskite films with good crystallinity and optical properties, which make them suitable for application in photovoltaic devices, and other optical and electrical applications.

Key wordsCH3NH3PbI3      Thin film      Perovskite      Successive ionic layer adsorption and reaction      Vapor process      Photovoltaic material     
Received: 13 November 2014      Published: 20 January 2015
MSC2000:  O649  

The project was supported by the National Natural Science Foundation of China (50502038, 10576036).

Corresponding Authors: LI Xiao-Min     E-mail:
Cite this article:

DING Xu-Kun, LI Xiao-Min, GAO Xiang-Dong, ZHANG Shu-De, HUANG Yu-Di, LI Hao-Ran. Optical and Electrical Properties of CH3NH3PbI3 Perovskite Thin Films Transformed from PbO-PbI2 Hybrid Films. Acta Phys. -Chim. Sin., 2015, 31(3): 576-582.

URL:     OR

(1) Noh, J. H.; Jeon, N. J.; Choi, Y. C.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. J. Mater. Chem. A 2013, 1, 11842. doi: 10.1039/c3ta12681a
(2) Im, J. H.; Lee, C. R.; Lee, J.W.; Park, S.W.; Park, N. G. Nanoscale 2011, 3, 4088. doi: 10.1039/c1nr10867k
(3) Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167
(4) Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316. doi: 10.1038/nature12340
(5) Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2012, 134, 17396. doi: 10.1021/ja307789s
(6) Kim, H. S.; Lee, J.W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N. G. Nano Lett. 2013, 13, 2412. doi: 10.1021/nl400286w
(7) Chen, Q.; Zhou, H. P.; Song, T. B.; Luo, S.; Hong, Z.; Duan, H. S.; Dou, L. T.; Liu, Y. S.; Yang, Y. Nano Lett. 2014, 14, 4158. doi: 10.1021/nl501838y
(8) Jeng, J. Y.; Chen, K. C.; Chiang, T. Y.; Lin, P. Y.; Tsai, T. D.; Chang, Y. C.; Guo, T. F.; Chen, P.;Wen, T. C.; Hsu, Y. J. Adv. Mater. 2014, 26, 4107. doi: 10.1002/adma.va26.24
(9) Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395. doi: 10.1038/nature12509
(10) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591.
(11) Yella, A.; Heiniger, L. P.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nano Lett. 2014, 14, 2591. doi: 10.1021/nl500399m
(12) Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y.; Grätzel, M.; Han, H.W.Science 2014, 345, 295. doi: 10.1126/science.1254763
(13) Chen, Q.; Zhou, H. P.; Hong, Z.; Luo, S.; Duan, H. S.;Wang, H. H.; Liu, Y. S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622. doi: 10.1021/ja411509g
(14) Kanniainen, T.; Lindroos, S.; Ihanus, J.; Leskela, M. J. Mater. Chem. 1996, 6, 161. doi: 10.1039/jm9960600161
(15) Kanniainen, T.; Lindroos, S.; Resch, R.; Leskela, M.; Friedbacher, G.; Grasserbauer, M. Mater. Res. Bull. 2000, 35, 1045. doi: 10.1016/S0025-5408(00)00298-1
(16) Zhuge, F.W.; Li, X. M.; Gao, X. D.; Gan, X. Y; Zhou, F. L. Mater. Lett. 2009, 63, 652. doi: 10.1016/j.matlet.2008.12.010
(17) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保,冯曾芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26, 2927.] doi: 10.3866/PKU.WHXB20101113
(18) Jambure, S. B.; Patil, S. J.; Deshpande, A. R.; Lokhande, C. D. Mater. Res. Bull. 2014, 49, 420. doi: 10.1016/j.materresbull.2013.09.007
(19) Sall, T.; Raidou, A.; Elfarrass, S.; Hartiti, B.; Mari, B.; Qachaou, A.; Fahoume, M. Opt. Quantum Electron 2014, 46, 247. doi: 10.1007/s11082-013-9786-x
(20) Gao, X. D.; Li, X. M.; Yu,W. D. Thin Solid Films 2004, 468, 43. doi: 10.1016/j.tsf.2004.04.005
(21) Shei, S. C.; Chang, S. J.; Lee, P. Y. J. Electrochem. Soc. 2011, 158, 208.
(22) Su, Z. H.; Yan, C.; Sun, K.W.; Han, Z. L.; Liu, F. Y.; Liu, J.; Lai, Y. Q.; Li, J.; Liu, Y. X. Appl. Surf. Sci. 2012, 258,7678. doi: 10.1016/j.apsusc.2012.04.120
(23) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
(24) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x
(25) Juarez-Perez, E. J.; Sanchez, R. S.; Badia, L.; Garcia-Belmonte, G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. J. Phys. Chem. Lett. 2014, 5, 2390. doi: 10.1021/jz5011169

[1] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[2] Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271.
[3] Jing ZHANG,Youjun HE,Jie MIN. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1221-1238.
[4] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[5] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[6] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.
[7] Hai-Fei WU,Yao CHEN,Shan-Hu XU,Yong-Hong YAN,Jian-Xiao SI,Yong-Sheng TAN. Molecular Beam Epitaxy Growth and Surface Structural Characteristics of PbTe(111) Thin Film[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 419-425.
[8] Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 314-328.
[9] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2523-2531.
[10] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[11] Er-Long SONG,Lin-Feng LAN,Zhen-Guo LIN,Sheng SUN,Wei SONG,Yu-Zhi LI,Pei-Xiong GAO,Peng ZHANG,Jun-Biao PENG. Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2092-2098.
[12] Ya-Nan WANG,Pin MA,Lu-Mei PENG,Di ZHANG,Yan-Yan FANG,Xiao-Wen ZHOU,Yuan LIN. Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2099-2105.
[13] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[14] Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.
[15] Qian-Rui LÜ,Jing LI,Zhi-Peng LIAN,Hao-Yan ZHAO,Gui-Fang DONG,Qiang LI,Li-Duo WANG,Qing-Feng YAN. CH3NH3PbI3 Single Crystal-Based Ambipolar Field-Effect Transistor with Ta2O5 as the Top Gate Dielectric[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 249-254.