Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (4): 700-706    DOI: 10.3866/PKU.WHXB201501261
Synthesis of Fluorinated Polyanionic Lithium Ion Insertion/Extraction Material LiVPO4F/C by Carbon Thermal Reduction Assisted Sol-Gel Method
HUANG Zhi-Peng1, GUO Lin-Yu1, GUO Chao2, ZHAO Meng-Meng1, WANG Xue-Hua1, JIN Zhao1, LUO Jin-Hua1, WANG Xin1, FENG Ji-Jun1
1 School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China;
2 School of Chemistry and Biological Engineering, Qilu Institute of Technology, Zhangqiu 250200, Shandong Province, P. R. China
Download:   PDF(1084KB) Export: BibTeX | EndNote (RIS)      


LiVPO4F/C, as a cathode material of lithium- ion batteries, was prepared by carbon thermal reduction assisted sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge cycles, cyclic voltammogram (CV), and electrochemical impedance spectroscopy (EIS) were employed to investigate the effects of sintering time and temperature on the structure and corresponding electrochemical performance of as prepared materials. At a sintering time of 4 h, pure phase LiVPO4F/C material was obtained when the temperature is settled at 450 ℃. The as-produced LiVPO4F/C exhibited discharge capacities of 193.2, 175.6, and 173.7 mAh·g-1 at 0.1C, 0.5C, and 1.0C rates, respectively. Li3V2(PO4)3 impurities are formed and increased with increasing calcination temperature. When sintered at 650 ℃ Li3V2(PO4)3 is turn out to be the main phase. On the other hand, optimal duration time at high temperature could also inhibit the decomposition of LiVPO4F and decrease the formation of Li3V2(PO4)3 impurities, improving electrochemical performance. Optimal conditions were found at a residence time of 3 h when the precursor is sintered at 550 ℃.

Key wordsLithium-ion battery      Cathode material      Sol-gel      Carbon thermal reduction      LiVPO4F/C     
Received: 19 November 2014      Published: 26 January 2015
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (51102114), Sci-Tech Development Project of Jinan, China (201401234), and National Undergraduate Training Programs for Innovation and Entrepreneurship, China (201310427010).

Corresponding Authors: FENG Ji-Jun     E-mail:
Cite this article:

HUANG Zhi-Peng, GUO Lin-Yu, GUO Chao, ZHAO Meng-Meng, WANG Xue-Hua, JIN Zhao, LUO Jin-Hua, WANG Xin, FENG Ji-Jun. Synthesis of Fluorinated Polyanionic Lithium Ion Insertion/Extraction Material LiVPO4F/C by Carbon Thermal Reduction Assisted Sol-Gel Method. Acta Phys. -Chim. Sin., 2015, 31(4): 700-706.

URL:     OR

(1) Whittingham, M. S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
(3) Ai, D. J.; Liu, K. Y.; Lu, Z. G.; Zou, M. M.; Zeng, D. Q.; Ma, J. Electrochim. Acta 2011, 56, 2823. doi: 10.1016/j.electacta.2010.12.063
(4) Padhi, A. K.; Najundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
(5) Chang, C. X.; Xiang, J. F.; Shi, X. X.; Han, X. Y.; Yuan, L. J.; Sun, J. T. Electrochim. Acta 2008, 54, 623. doi: 10.1016/j.electacta.2008.07.038
(6) Reimers, J. N.; Dahn, J. R. J. Electrochemi. Soc. 1992, 139, 2091. doi: 10.1149/1.2221184
(7) Wu, L.; Zhong, S. K.; Liu, J. Q.; Lv, F.; Wan, K. Mater. Lett. 2012, 89, 32. doi: 10.1016/j.matlet.2012.08.076
(8) Feng, J. J.; Huang, Z. P.; Guo, C.; Chernova, N. A.; Upreti, S.; Whittingham, M. S. ACS Appl. Mater. Interfaces 2013, 5, 10227. doi: 10.1021/am4029526
(9) Li, Z.; Chernova, N. A.; Feng, J. J.; Upreti, S.; Omenya, F.; Whittingham, M. S. J. Electrochem. Soc. 2012, 159, A116.
(10) Barker, J.; Saidi, M. Y.; Swoyer, J. L. Lithium Metal Fluorophosphate Materials and Preparation Thereof. US 6387568 B1, 2002.
(11) Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2003, 150 (10), A1394.
(12) Zhong, S. K.; Chen, W.; Liu, C. J. Trans. Nonferrous Met. Soc. China 2010, 20, s275.
(13) Lee, K.; Myung, S.; Yashiro, H.; Sun, Y. Electrochim. Acta 2008, 53, 3065. doi: 10.1016/j.electacta.2007.11.042
(14) Wang, L.; Huang, Y.; Jiang, R.; Jia, D. Electrochim. Acta 2007, 52, 6778. doi: 10.1016/j.electacta.2007.04.104
(15) Feng, J. J.; Liu, X. Z.; Zhang, X. M.; Jiang, J. Z.; Zhao, J.; Wang, M. J. Electrochem. Soc. 2009, 156, A768.
(16) Liu, L.; Tian, F. H.; Wang, X. Y.; Zhou, M. Acta Phys. -Chim. Sin. 2011, 27, 2600. [刘黎, 田方华, 王先友, 周萌. 物理化学学报, 2011, 27, 2600.] doi: 10.3866/PKU.WHXB20111126
(17) Ellis, B. L.; Ramesh, T. N.; Davis, L. J. M.; Goward, G. R.; Nazar, L. F. Chem. Mater. 2011, 23, 5138. doi: 10.1021/cm201773n
(18) Barker, J.; Gover, R. K. B.; Burns, P.; Bryan, A.; Saidi, M. Y.; Swoyer, J. L. J. Power Sources 2005, 146, 516. doi: 10.1016/j.jpowsour.2005.03.126
(19) Wang, J. X.; Wang, Z. X.; Shen, L.; Li, X. H.; Guo, H. J.; Tang, W. J.; Zhu, Z. G. Trans. Nonferrous Met. Soc. China 2013, 23, 1718. doi: 10.1016/S1003-6326(13)62653-9
(20) Xiao, P. F.; Lai, M. O.; Lu, L. Solid State Ionics 2013, 242, 10. doi: 10.1016/j.ssi.2013.04.002
(21) Li, Y. Z.; Zhou, Z.; Gao, X. P.; Yan, J. J. Power Sources 2006, 160, 633. doi: 10.1016/j.jpowsour.2006.01.067
(22) Xiong, Z. Q.; Zhang, G. Q.; Xiong, J. Q.; Yang, X. Q.; Zhang, Y. Y. Mater. Lett. 2013, 111, 214. doi: 10.1016/j.matlet.2013.08.086
(23) Piao, Y.; Lin, Lin, C. K.; Qin, Y.; Zhou, D. H.; Ren, Y.; Bloom, I.; Wei, Y. J.; Chen, G.; Chen, Z. H. J. Power Sources 2015, 273, 1250. doi: 10.1016/j.jpowsour.2013.11.127
(24) Sun, X. F.; Xu, Y. L.; Chen, G. G.; Ding, P.; Zheng, X. Y. Solid State Ionics 2014, 268, 236. doi: 10.1016/j.ssi.2014.08.008
(25) Wang, Y. L.; Zhao, H. X.; Ji, Y. F.; Wang, L. H.; Wei, Z. Solid State Ionics 2014, 268, 169. doi: 10.1016/j.ssi.2014.10.031
(26) Huang, H.; Yin, S. C.; Kerr, T.; Taylor, N.; Nazar, L. F. Adv. Mater. 2002, 14, 1525. doi: 10.1002/1521-4095(20021104)14: 21<1525::AID-ADMA1525>3.0.CO;2-3
(27) Wei, Y.; Wang, L. J.; Yan, J.; Sha, O.; Tang, Z. Y.; Ma, L. Acta Phys. -Chim. Sin. 2011, 27, 2587. [魏怡, 王利娟, 闫继, 沙鸥, 唐致远, 马莉. 物理化学学报, 2011, 27, 2587.] doi: 10.3866/PKU.WHXB20111124

[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[3] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[4] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[5] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[6] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[7] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[8] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[9] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[10] Xiao-Ru ZHANG,Yue-Feng XU,Shou-Yu SHEN,Yuan CHEN,Ling HUANG,Jun-Tao LI,Shi-Gang SUN. Reduced Graphene Oxide-LaFeO3 Composite Nanomaterials as Bifunctional Catalyst for Rechargeable Lithium-Oxygen Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2237-2244.
[11] Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 18-27.
[12] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[13] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[14] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.
[15] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.