Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (4): 676-684    DOI: 10.3866/PKU.WHXB201501281
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials
LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping
School of Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China
Download:   PDF(3243KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

In this work, N, S co-doped microporous carbon materials were successfully prepared using human hair and sucrose as carbon precursors via a two-step method that combined hydrothermal treatment and post-KOH activation. The morphology, pore texture, and surface chemical properties of the activated carbon materials were investigated by scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical capacitive behavior of the prepared carbons was systematically studied in 6 mol·L-1 KOH electrolyte. The maximum specific surface area of the prepared carbons was found to be 1849.4 m2·g-1 with a porosity that mainly consisted of micropores. Nitrogen and sulfur contents varied from 1.6% to 2.5% and from 0.2% to 0.5% (atomic fraction (x)), respectively. The synergistic-positive effect of N, O, and S-containing groups caused the prepared carbons to exhibit a large pseudo-capacitance. High specific capacitances of up to 200 F·g-1 at 0.2 A·g-1 were observed, response to an energy density of 6.9 Wh·kg-1. At a power density of 10000 W·kg-1, the energy density was found to be 4.1 Wh·kg-1. The present work highlights the significance of this new strategy to prepare N, S co-doped carbon materials from renewable biomass.



Key wordsCarbon materials      Supercapacitor      Human hair      Electrochemical property      Hydrothermal treatment     
Received: 13 November 2014      Published: 28 January 2015
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51302156).

Corresponding Authors: ZHOU Jin, ZHUO Shu-Ping     E-mail: zhoujsdut@gmail;zhuosp_cademic@yahoo.com
Cite this article:

LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials. Acta Phys. Chim. Sin., 2015, 31(4): 676-684.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201501281     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I4/676

(1) Horst, J. R.; Karl, F. K. Am. Chem. Soc. 1983, 7, 71.
(2) Ishida, M.; Jin, H. Ind. Eng. Chem. Res. 1996, 35, 2469. doi: 10.1021/ie950680s
(3) Fan, L. S.; Zeng, L.; Wang, W.; Luo, S.W. Energy Environ. Sci. 2012, 5, 7254. doi: 10.1039/c2ee03198a
(4) Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L. F. Prog. Energy Combust. Sci. 2012, 38, 215. doi: 10.1016/j.pecs.2011.09.001
(5) Zhang, Y.; Doroodchi, E.; Moghtaderi, B. Energy Fuels 2012, 26, 287.
(6) Fang, H.; Haibin, L.; Zengli, Z. Int. J. Chem. Eng. 2009, 710515
(7) Lyngfelt, A.; Leckner, B.; Mattisson, T. Chem. Eng. Sci. 2001, 56, 3101. doi: 10.1016/S0009-2509(01)00007-0
(8) Johansson, M.; Mattisson, T.; Lyngfelt, A. J. Therm. Sci. 2006, 10, 93. doi: 10.2298/TSCI0603093J
(9) Saha, C.; Bhattacharya, S. Int. J. Chem. Eng. 2011, 36, 12048.
(10) Cho, P.; Mattisson, T.; Lyngfelt, A. Fuels 2004, 83, 1215. doi: 10.1016/j.fuel.2003.11.013
(11) Zhao, H. B.; Liu, L. M.; Wang, B.W.; Xu, D.; Jiang, L. L.; Zheng, C. G. Energy Fuels 2008, 22, 898. doi: 10.1021/ef7003859
(12) Dennis, J. S.; Scott, S. A. Fuels 2010, 89, 1623. doi: 10.1016/j.fuel.2009.08.019
(13) Lee, J. B.; Park, C. S.; Choi, S. I.; Song, Y.W.; Kim, Y. H.; Yang, H. S. J. Ind. Engin. Chem. 2005, 11, 96.
(14) Yang, J. B.; Cai, N. S.; Li, Z. S. Energy Fuels 2007, 21, 360.
(15) Guo, L.; Zhao, H. B.; Ma, J. C.; Mei, D. F.; Zheng, C. G. Chem. Eng. Technol. 2014, 37, 1211. doi: 10.1002/ceat.v37.7
(16) Zhu, X.; Li, K. Z.; Wei, Y. G.; Wang, H.; Sun, L. Y. Fuels 2014, 28, 754. doi: 10.1021/ef402203a
(17) Wang, C. P.; Cui, H. R.; Di, H. S.; Guo, Q. J.; Huang, F. Fuels 2014, 28, 4162. doi: 10.1021/ef500354w
(18) Azimi, G.; Leion, H.; Mattisson, T.; Rydén, M.; Snijkers, F.; Lyngfelt, A. Ind. Eng. Chem. Res. 2014, 53, 10358. doi: 10.1021/ie500994m
(19) Qin, W.; Wang, Y.; Dong, C.; Zhang, J.; Chen, Q.; Yang, Y. Energ. Appl. Surf. Sci. 2013, 282, 718. doi: 10.1016/j.apsusc.2013.06.041
(20) Wang, B.W.; Yan, R.; Zhao, H. B.; Zheng, Y.; Liu, Z. H.; Zheng, C. G. Energy Fuels 2011, 25, 3344. doi: 10.1021/ef2004078
(21) Qin, W.; Chen, Q.; Wang, Y.; Dong, C.; Zhang, J.; Li, W.; Yang, Y. Energ. Appl. Surf. Sci. 2013, 266, 350. doi: 10.1016/j.apsusc.2012.12.023
(22) Wang, S. Z.; Wang, G. X.; Jiang, F.; Luo, M.; Li, H. Y. Energy Environ. Sci. 2010, 3, 1353. doi: 10.1039/b926193a
(23) Liu, L.; Zachariah, M. R. Energy Fuels 2013, 27, 4977. doi: 10.1021/ef400748x
(24) Bao, J.; Li, Z.; Cai, N. Ind. Eng. Chem. Res. 2013, 52, 6119. doi: 10.1021/ie400237p
(25) Ksepko, E.; Siriwardane, R. V.; Tian, H. J.; Simonyi, T.; Sciazko, M. Energy Fuels 2012, 26, 2461. doi: 10.1021/ef201441k
(26) Moghtaderi, B.; Song, H. Energy Fuels 2010, 24, 5359.
(27) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
(28) Xie, X.W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Nature 2009, 458, 746. doi: 10.1038/nature07877
(29) Zhou, X.; Xu, Q.; Lei, W.; Zhang, T.; Qi, X.; Liu, G.; Deng, K.; Yu, J. Small 2014, 10, 674. doi: 10.1002/smll.201301870
(30) Zhu, J.; Ng, K. Y. S.; Deng, D. Cryst. Growth Des. 2014, 14, 2811. doi: 10.1021/cg5000777
(31) Liu, X. H.; Zhang, J.; Wu, S. H.; Yang, D. J.; Liu, P.; Zhang, H. M.; Wang, S. R.; Yao, X. D.; Zhu, G. S.; Zhao, H. J. RSC Adv. 2012, 2, 6178. doi: 10.1039/c2ra20797d
(32) Guo, H.; Barnard, A. S. J. Colloid Interface Sci. 2012, 386, 315. doi: 10.1016/j.jcis.2012.07.011
(33) Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses;Wiley-VCH: New York, USA, 2003.
(34) Dong, C. Q.; Liu, X. L.; Qin, W.; Lu, Q.; Wang, X. Q.; Shi, S. M.; Yang, Y. P. Appl. Surf. Sci. 2012, 258, 2562. doi: 10.1016/j.apsusc.2011.10.092
(35) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045. doi: 10.1103/RevModPhys.64.1045
(36) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
(37) Leung, T. C.; Chan, C. T.; Harmon, B. N. Phys. Rev. B 1991, 44, 2923. doi: 10.1103/PhysRevB.44.2923
(38) Guo, H. B.; Barnard, A. S. Phys. Rev. B 2011, 83, 094112. doi: 10.1103/PhysRevB.83.094112
(39) Song, J. J.; Niu, X. Q.; Ling, L. X.; Wang, B. J. Fuel Process. Technol. 2013, 115, 26. doi: 10.1016/j.fuproc.2013.04.003
(40) Wong, K.; Zeng, Q. H.; Yu, A. B. J. Phys. Chem. C 2011, 115, 4656. doi: 10.1021/jp1108043
(41) Martin, G. J.; Cutting, R. S.; VauGhan, D. J.; Warren, M. C. Am. Mineral. 2009, 94, 1341. doi: 10.2138/am.2009.3029
(42) Sandratskii, L. M.; Uhl, M.; Kübler, J. J. Phys.: Condes. Matter 1996, 8, 983. doi: 10.1088/0953-8984/8/8/009
(43) White, J. A.; Bird, D. M. Phys. Rev. B: Condes. Matter Mater. Phys. 1994, 50, 4954. doi: 10.1103/PhysRevB.50.4954
(44) Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. doi: 10.1016/S0927-0256(03)00111-3
(45) Rohmann, C.; Metson, J. B.; Idriss, H. Phys. Chem. Chem. Phys. 2014, 16, 14287. doi: 10.1039/c4cp01373e
(46) Gilbert, B.; Frandsen, C.; Maxey, E. R.; Sherman, D. M. Phys. Rev. B 2009, 79, 035108. doi: 10.1103/PhysRevB.79.035108
(47) Al-Kuhaili, M. F.; Saleem, M.; Durrani, S. M. A. J. Alloy. Compd. 2012, 521, 178. doi: 10.1016/j.jallcom.2012.01.115
(48) Turkdogan, E. T.; Vinters, J. V. Metall. Trans. 1974, 5, 11.
(49) Dong, C. Q.; Sheng, S. H.; Qin, W.; Lu, Q.; Zhao, Y.; Wang, X. Q.; Zhang, J. J. Appl. Surf. Sci. 2011, 257, 8647. doi: 10.1016/j.apsusc.2011.05.042
(50) Wang, B.W.; Yan, R.; Lee, D. H.; Liang, D. T.; Zheng, Y.; Zhao, H. B.; Zheng, C. G. Energy Fuels 2008, 22, 1012. doi: 10.1021/ef7005673

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[4] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[5] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[6] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[7] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[8] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[9] LIU Zhao-Xin, LI Wei-Bin. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1795-1800.
[10] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[11] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[12] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[13] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[14] LI Yang, XIE Hua-Qing, LI Jing. Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors[J]. Acta Phys. Chim. Sin., 2015, 31(4): 693-699.
[15] YANG Shuo, XU Gui-Yin, HAN Jin-Peng, BING Huan, DOU Hui, ZHANG Xiao-Gang. Nitrogen-Doped Porous Carbon Derived from Dopamine-Modified Polypyrrole and Its Electrochemical Capacitive Behavior[J]. Acta Phys. Chim. Sin., 2015, 31(4): 685-692.