Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (4): 660-666    DOI: 10.3866/PKU.WHXB201501291
Molecular Simulation of Adsorption and Separation Performances for CO2/CH4 Mixtures in Graphene/Nanotube Hybrid Structures
LEI Guang-Ping, LIU Chao, XIE Hui
Key Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
Download:   PDF(1215KB) Export: BibTeX | EndNote (RIS)      


The adsorption and separation behaviors of CO2 and CH4 binary mixture in graphene/nanotube hybrid structures (GNHSs) are investigated by grand canonical Monte Carlo (GCMC) combined with molecular dynamics (MD) simulations. CO2 is preferentially adsorbed in the adsorbents. Compared with a (6, 6) SWCNT (single walled carbon nanotube), GNHSs show improved separation performance. As the temperature rises, the loading of CO2 reduces rapidly while the loading of CH4 first increases before being reduced. Finally, the kinetic parameters of CO2 and CH4, such as self-diffusivity and residence time, are calculated by MD simulation. The CO2 molecules diffusing in the GNHS need to overcome a higher barrier relative to that for CH4. The diffusion of the two components in the adsorption layer outside of adsorbent also influences the separation of the mixture.

Key wordsGraphene/nanotube hybrid structure      Adsorption isotherm      Residence time      Adsorption selectivity      Adsorption coefficient     
Received: 24 September 2014      Published: 29 January 2015
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (51206195).

Corresponding Authors: LIU Chao     E-mail:
Cite this article:

LEI Guang-Ping, LIU Chao, XIE Hui. Molecular Simulation of Adsorption and Separation Performances for CO2/CH4 Mixtures in Graphene/Nanotube Hybrid Structures. Acta Phys. Chim. Sin., 2015, 31(4): 660-666.

URL:     OR

(1) Peng, X.; Cao, D. P. AIChE Journal 2013, 59, 2928. doi: 10.1002/aic.v59.8
(2) Zhang, J. H.; Shen, B. X.; Sun, H.; Liu, J. C. Petroleum Science and Technology 2011, 29, 48. doi: 10.1080/10916460903330221
(3) Krischan, J.; Makaruk, A.; Harasek, M. Journal of Hazardous Materials 2012, 215 -216, 49.
(4) Ma, Y. H.; Zhao, H. L.; Tang, S. J.; Hu, J.; Liu, H. L. Acta Phys. -Chim. Sin. 2011, 27, 689. [马燕辉, 赵会玲, 唐圣杰, 胡军, 刘洪来. 物理化学学报, 2011, 27, 689.] doi: 10.3866/PKU.WHXB20110335
(5) Cosoli, P.; Ferrone, M.; Pricl, S.; Fermeglia, M. Chemical Engineering Journal 2008, 145, 93. doi: 10.1016/j.cej.2008.08.013
(6) Chen, S. J.; Dai, W.; Luo, J. S.; Tang, Y. J.; Wang, C. Y.; Sun, W. G. Acta Phys. -Chim. Sin. 2009, 25, 285. [陈善俊, 戴伟, 罗江山, 唐永建, 王朝阳, 孙卫国. 物理化学学报, 2009, 25, 285.] doi: 10.3866/PKU.WHXB2009021
(7) Wu, X. J.; Zheng, J.; Li, J.; Cai, W. Q. Acta Phys. -Chim. Sin. 2013, 29, 2207. [吴选军, 郑佶, 李江, 蔡卫权. 物理化学学报, 2013, 29, 2207.] doi: 10.3866/PKU.WHXB201307191
(8) An, X. H, ; Liu, D. H.; Zhong, C. L. Acta Phys. -Chim. Sin. 2011, 27, 553. [安晓辉, 刘大欢, 仲崇立. 物理化学学报, 2011, 27, 553.] doi: 10.3866/PKU.WHXB20110319
(9) Feng, W.; Kwon, S.; Borguet, E.; Vidic, R. Environmental Science Technology 2005, 39, 9744. doi: 10.1021/es0507158
10) Arab, M.; Picaud, F.; Devel, M.; Ramseyer, C.; Girardet, C. Physical Review B 2004, 69, 165401. doi: 10.1103/PhysRevB.69.165401
(11) Huang, L.; Zhang, L.; Shao, Q.; Lu, L.; Lu, X.; Jiang, S.; Shen, W. The Journal of Physical Chemistry C 2007, 111, 11912. doi: 10.1021/jp067226u
(12) Jiang, J.; Sandler, S. I. Physical Review B 2003, 68, 245412. doi: 10.1103/PhysRevB.68.245412
(13) Liu, L.; Bhatia, S. K. The Journal of Physical Chemistry C 2013, 117, 13479. doi: 10.1021/jp403477y
(14) Razavi, S. S.; Hashemianzadeh, S. M.; Karimi, H. J. Mol. Model. 2011, 17, 1163. doi: 10.1007/s00894-010-0810-9
(15) Liu, X. Q.; Tian, Z. Y.; Chu, W.; Xue, Y. Acta Phys. -Chim. Sin. 2014, 30, 251. [刘晓强, 田之悦, 储伟, 薛英. 物理化学学报, 2014, 30, 251.] doi: 10.3866/PKU.WHXB201312243
(16) Ye, Q.; Zhang, Y.; Li, M.; Shi, Y. Acta Phys. -Chim. Sin. 2012, 28, 1223. [叶青, 张瑜, 李茗, 施耀. 物理化学学报, 2012, 28, 1223.] doi: 10.3866/PKU.WHXB201202234
(17) Lei, G. P.; Liu, C.; Xie, H. Journal of Engineering Thermophysics 2014, 35, 428. [雷广平, 刘朝, 解辉. 工程热物理学报, 2014, 35, 428.]
(18) Bittolo, B.; Valentini, L.; Kenny, J. M. Physica Status Solidi (a) 2010, 207, 2461. doi: 10.1002/pssa.v207:11
(19) Cai, D.; Song, M.; Xu, C. Advanced Materials 2008, 20, 1706.
(20) Zhu, X.; Ning, G.; Fan, Z. Carbon 2012, 50, 2764. doi: 10.1016/j.carbon.2012.02.037
(21) Xu, L.; Wei, N.; Zheng, Y. Journal of Materials Chemistry 2012, 22, 1435. doi: 10.1039/c1jm13799a
(22) Novaes, F. D.; Rurali, R.; Ordejon, P. ACS Nano 2010, 4, 7596. doi: 10.1021/nn102206n
(23) Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E. Nano Letters 2008, 8, 3166. doi: 10.1021/nl801417w
(24) Wu, C.; Fang, T.; Lo, J. International Journal of Hydrogen Energy 2012, 37, 14211. doi: 10.1016/j.ijhydene.2012.07.040
(25) Weso?owski, R. P.; Terzyk, A. P. Physical Chemistry Chemical Physics 2011, 13, 17027. doi: 10.1039/c1cp21590f
(26) Liu, L.; Nicholson, D.; Bhatia, S. K. Chemical Engineering Science 2015, 121, 268. doi: 10.1016/j.ces.2014.07.041
(27) Gupta, A.; Chempath, S.; Sanborn, M. J.; Clark, L. A.; Snurr, R. Q. Molecular Simulation 2003, 29, 29. doi: 10.1080/0892702031000065719
(28) Frenkel, S. Understanding Molecular Mimulation —from Algorithms to Applications; Chemical Industry Press: Beijing, 2002; pp 112-113; translated byWang, W. C. [Frenkel, S. 分子模拟—从算法到应用. 汪文川译. 北京: 化学工业出版社, 2002: 112-113.]
(29) Skarmoutsos, I.; Tamiolakis, G.; Froudakis, G. E. The Journal of Physical Chemistry C 2013, 117, 19373.
(30) Simon, J. M.; Bellat, J. P.; Salazar, J. M. Molecular Simulation 2014, 40, 52. doi: 10.1080/08927022.2013.845332

[1] HE Lan-Lan, GUO Yu, ZHAO Jian, JIANG Xin-Rui, YANG Zhong-Zhi, ZHAO Dong-Xia. Study on Coordination Microstructure andWater Exchange Reaction of Zn2+ Aqueous Solutions through Molecular Dynamics Simulations Using the ABEEMσπ Polarizable Force Field[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2921-2931.
[2] XING Jian-Dong, JING Fang-Li, CHU Wei, SUN Hong-Li, YU Lei, ZHANG Huan, LUO Shi-Zhong. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2158-2164.
[3] WANG Zhao-Yang, LI Gang, SUN Zhi-Guo. Denitrogenation through Adsorption to Sulfonated Metal-Organic Frameworks[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2422-2428.
[4] PENG Xuan, ZHANG Qin-Xue, CHENG Xuan, CAO Da-Peng. Adsorption and Separation of CO2/CH4/N2 Binary Mixtures in an Ordered Mesoporous Carbon Material CMK-3[J]. Acta Phys. Chim. Sin., 2011, 27(09): 2065-2071.
[5] GAO Meng, YAO Xin-Qiu, SHE Zhen-Su, LIU Zhi-Rong, ZHU Huai-Qiu. Intermediate Structure and Slow HydrationWater Dynamics in Protein Folding Process[J]. Acta Phys. Chim. Sin., 2010, 26(07): 1998-2006.
[6] WU Jian, WANG Yu, HUANG Feng, YANG Yang, MENG Chang-Gong. Thermal Diffusion Synthesis and Characterization of SnO2 Clusters within ZSM-5 Crystals[J]. Acta Phys. Chim. Sin., 2010, 26(06): 1705-1710.
[7] CHEN Shan-Jun; DAI Wei; LUO Jiang-Shan; TANG Yong-Jian; WANG Chao-Yang; SUN Wei-Guo. Simulation of Methane Adsorption in AFS Molecular Sieves[J]. Acta Phys. Chim. Sin., 2009, 25(02): 285-290.
[8] YUE Qiao-Hong; SHAO Xiao-Hong; CAO Da-Peng. Separation of Hydrogen and Carbon Dioxide in Activated Mesocarbon Microbeads with High Specific Surface[J]. Acta Phys. Chim. Sin., 2007, 23(07): 1080-1084.
[9] Guan Li-Li;Duan Lian-Yun;Xie You-Chang. The Adsorptive Separation of N2 and Ar by Some Zeolites Highly Exchanged with Li[J]. Acta Phys. Chim. Sin., 2004, 20(07): 684-689.
[10] Guan Li-Li;Duan Lian-Yun;Xie You-Chang. Adsorptive Separation of N2 and Ar by some Zeolites Exchanged with Ca2+[J]. Acta Phys. Chim. Sin., 2002, 18(11): 998-1004.
[11] Dai Min-Guang,Miao Rui-Ping. Studies on Binary Gas Solid Adsorption(IV)[J]. Acta Phys. Chim. Sin., 1995, 11(07): 596-600.