Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (4): 693-699    DOI: 10.3866/PKU.WHXB201502021
ELECTROCHEMISTRY AND NEW ENERGY     
Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors
LI Yang, XIE Hua-Qing, LI Jing
School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, P. R. China
Download:   PDF(1445KB) Export: BibTeX | EndNote (RIS)      

Abstract  

α-MnO2 and Al-doped α-MnO2 were synthesized via a hydrothermal method. The morphologies, structures, and electrochemical performances of as-synthesized un-doped and doped α-MnO2 were studied. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) show that these un-doped and doped α-MnO2 are nanotube shaped. The band gaps of α-MnO2 are investigated by ultraviolet-visible absorption spectroscopy, which indicates that the band gap of α-MnO2 decreases upon Al doping. The electrochemical performances of un-doped and doped α-MnO2 as electrode materials for supercapacitors were measured by cyclic voltammetry (CV) and galvanostatical charge/discharge tests. The specific capacitances of un-doped and Al-doped α-MnO2 respectively reach 204.8 and 228.8 F·g-1under a current density of 50 mA·g-1. It was discovered that the electrochemical impedance of Al-doped α-MnO2 was decreased by Al doping analyzed using electrochemical impedance spectra (EIS), which provides a beneficial increase to its electrochemical specific capacitance. Enhanced specific capacitance and preferable cycling stability (up to 1000 cycles) for Al-doped α-MnO2 mean that these systems are favorable prospects for application in supercapacitors.



Key wordsα-MnO2      Al doping      Nanotube      Supercapacitor      Electrochemical capacitor     
Received: 09 September 2014      Published: 02 February 2015
MSC2000:  O646  
  TM911  
Fund:  

The project was supported by the Key Innovation Foundation of Shanghai Education Commission, China (13ZZ139), Key Discipline Construction (Materials Science) of Shanghai Second Polytechnic University, China (XXKPY1302), and Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China.

Corresponding Authors: LI Yang     E-mail: liyang@sspu.edu.cn
Cite this article:

LI Yang, XIE Hua-Qing, LI Jing. Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors. Acta Phys. Chim. Sin., 2015, 31(4): 693-699.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201502021     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I4/693

(1) Yao, W.; Wang, J.; Li, H.; Lu, Y. J. Power Sources 2014, 247, 824. doi: 10.1016/j.jpowsour.2013.09.039
(2) Ghimbeu, C. M.; Malak-Polaczyk, A.; Frackowiak, E.; Vix- Guterl, C. J. Appl. Electrochem. 2014, 44, 123. doi: 10.1007/s10800-013-0614-6
(3) Zhu, G.; Deng, L.; Wang, J.; Kang, L.; Liu, Z. H. Colloids Surfaces A 2013, 434, 42. doi: 10.1016/j.colsurfa.2013.05.008
(4) Jiang, H.; Dai, Y.; Hu, Y.; Chen, W.; Li, C. ACS Sustain. Chem. Eng. 2014, 2, 70. doi: 10.1021/sc400313y
(5) Azhagan, M. V. K.; Vaishampayan, M. V.; Shelke, M. V. J. Mater. Chem. A 2014, 2, 2152. doi: 10.1039/C3TA14076H
(6) Zolfaghari, A.; Naderi, H. R.; Mortaheb, H. R. J. Electroanal. Chem. 2013, 697, 60. doi: 10.1016/j.jelechem.2013.03.012
(7) Yu, M.; Sun, H.; Sun, X.; Lu, F.; Wang, G.; Hu, T.; Qiu, H.; Lian, J. Int. J. Electrochem. Sci. 2013, 8, 2313.
(8) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29, 1681.] doi: 10.3866/PKU.WHXB201305223
(9) Hashem, A. M.; Abuzeid, H. M.; Mikhailova, D.; Ehrenberg, H.; Mauger, A.; Julien, C. M. J. Mater. Sci. 2012, 47, 2479. doi: 10.1007/s10853-011-6071-x
(10) Wang, G.; Shao, G.; Du, J.; Zhang, Y.; Ma, Z. Mater. Chem. Phys. 2013, 138, 108. doi: 10.1016/j.matchemphys.2012.11.024
(11) Dubal, D. P.; Lokhande, C. D. Ceram. Int. 2013, 39, 415. doi: 10.1016/j.ceramint.2012.06.042
(12) Hashem, A. M.; Abuzeid, H. M.; Narayanan, N.; Ehrenberg, H.; Julien, C. M. Mater. Chem. Phys. 2011, 130, 33. doi: 10.1016/j.matchemphys.2011.04.074
(13) Ryu, W. H.; Han, D.W.; Kim, W. K.; Kwon, H. S. J. Nanopart. Res. 2011, 13, 4777. doi: 10.1007/s11051-011-0448-2
(14) Shanthi, S.; Ravi, S. Int. J. Chem. Tech. Res. 2014, 6, 2066.
(15) Wang, S.; Liu, Q.; Yu, J.; Zeng, J. Int. J. Electrochem. Sci. 2012, 7, 1242.
(16) Kunkalekar, R. K.; Salker, A. V. React. Kinet. Mech. Catal. 2012, 106, 395. doi: 10.1007/s11144-012-0443-3
(17) Hashem, A. M.; Abdel-Latif, A. M.; Abuzeid, H. M.; Abbas, H. M.; Ehrenberg, H.; Farag, R. S.; Mauger, A.; Julien, C. M. J. Alloy. Compd. 2011, 509, 9669. doi: 10.1016/j.jallcom.2011.07.075
(18) Malankar, H.; Umare, S. S.; Singh, K. Mater. Lett. 2009, 63, 2016. doi: 10.1016/j.matlet.2009.06.044
(19) Jung, K. N.; Riaz, A.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J.W. J. Power Sources 2013, 244, 328. doi: 10.1016/j.jpowsour.2013.01.028
(20) Zhang, Y.; Liu, H.; Zhu, Z.; Wong, K.W.; Mi, R.; Mei, J.; Lau, W. M. Electrochim. Acta 2013, 108, 465. doi: 10.1016/j.electacta.2013.07.002
(21) Song, Z.; Liu, W.; Zhao, M.; Zhang, Y.; Liu, G.; Yu, C.; Qiu, J. J. Alloy. Compd. 2013, 560, 151. doi: 10.1016/j.jallcom.2013.01.117
(22) Wang, G. S.; He, S.; Luo, X.; Wen, B.; Lu, M. M.; Guo, L.; Cao, M. S. RSC Adv. 2013, 3, 18009. doi: 10.1039/c3ra42412j
(23) Zhou, M.; Zhang, X.; Wang, L.; Wei, J.; Zhu, K.; Feng, B. J. Nanosci. Nanotechnol. 2013, 13, 904. doi: 10.1166/jnn.2013.5958
(24) Shan, J.; Zhu, Y.; Zhang, S.; Zhu, T.; Rouvimov, S.; Tao, F. J. Phys. Chem. C 2013, 117, 8329. doi: 10.1021/jp4018103
(25) Wu, Y.; Lu, Y.; Song, C.; Ma, Z.; Xing, S.; Gao, Y. Catal. Today 2013, 201, 32. doi: 10.1016/j.cattod.2012.04.032
(26) Umek, P.; Gloter, A.; Pregelj, M.; Dominko, R.; Jagodic, M.; Jaglicic, Z.; Zimina, A.; Brzhezinskaya, M.; Potocnik, A.; Filipic, C.; Levstik, A.; Arcon, D. J. Phys. Chem. C 2009, 113, 14798. doi: 10.1021/jp9050319
(27) Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Phys. Chem. B 2005, 109, 9651. doi: 10.1021/jp0500485
(28) Kang, J. L.; Hirata, A. H.; Kang, L. J.; Zhang, X. M.; Hou, Y.; Chen, L. Y.; Li, C.; Fujita, T.; Atagi, K.; Chen, M.W. Angew. Chem. Int. Edit. 2013, 52, 1664. doi: 10.1002/anie.v52.6

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[5] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[6] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[7] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[8] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. Chim. Sin., 2017, 33(3): 548-553.
[9] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[10] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[11] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[12] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[13] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2042-2051.
[14] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[15] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.