Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (4): 685-692    DOI: 10.3866/PKU.WHXB201502022
ELECTROCHEMISTRY AND NEW ENERGY     
Nitrogen-Doped Porous Carbon Derived from Dopamine-Modified Polypyrrole and Its Electrochemical Capacitive Behavior
YANG Shuo, XU Gui-Yin, HAN Jin-Peng, BING Huan, DOU Hui, ZHANG Xiao-Gang
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
Download:   PDF(2081KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Carbonization of a nitrogen-containing polymer under inert atmosphere has been used to obtain nitrogen-enriched carbon materials. Herein, we synthesized dopamine-modified polypyrrole (PDA-PPy) via chemical polymerization, which was then carbonized under nitrogen atmosphere to produce nitrogen-doped porous carbon materials (NPC). The structure and morphology of the NPC were investigated by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). By regulating the molar ratio of pyrrole monomer to dopamine, the morphology of PDA-PPy and the capacitive performance of NPC could be controlled. At a current density of 0.5 A·g-1, the specific capacitance of NPC-0.5 (the molar ratio of dopamine to pyrrole monomer is 0.5) is ca 210 F·g-1. Even at a current density of 10 A·g-1, the specific capacitance of NPC-0.5 is up to 134 F·g-1 and the retention rate is 63.8%.



Key wordsPyrrole      Dopamine      Porous carbon      Nitrogen-doping      Supercapacitor     
Received: 09 October 2014      Published: 02 February 2015
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2014CB239701), National Natural Science Foundation of China (21103091, 21173120, 51372116), and Natural Science Foundation of Jiangsu Province, China (BK2011030).

Corresponding Authors: ZHANG Xiao-Gang     E-mail: azhangxg@163.com
Cite this article:

YANG Shuo, XU Gui-Yin, HAN Jin-Peng, BING Huan, DOU Hui, ZHANG Xiao-Gang. Nitrogen-Doped Porous Carbon Derived from Dopamine-Modified Polypyrrole and Its Electrochemical Capacitive Behavior. Acta Phys. Chim. Sin., 2015, 31(4): 685-692.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201502022     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I4/685

(1) Xu, G. Y.; Ding, B.; Pan, J.; Nie, P.; Shen, L. F.; Zhang, X. G. Journal of Materials Chemistry A 2014, 2 (32), 12662. doi: 10.1039/C4TA02097A
(2) Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho J.; Bruce, P. G. Angewandte Chemie International Edition 2012, 51 (40), 9994. doi: 10.1002/anie.201201429
(3) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Physico-Chimica Sinica 2013, 29 (8), 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29 (8), 1681.] doi: 10.3866/PKU.WHXB201305223
(4) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Physico-Chimica Sinica 2013, 29 (3), 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29 (3), 546.] doi: 10.3866/PKU.WHXB201301081
(5) Che, Q.; Zhang, F.; Zhang, X. G.; Lu, X. J.; Ding, B.; Zhu, J. J. Acta Physico-Chimica Sinica 2012, 28 (4), 837. [车倩, 张方, 张校刚, 卢向军, 丁兵, 朱佳佳. 物理化学学报, 2012, 28 (4), 837.] doi: 10.3866/PKU.WHXB201202074
(6) Guo, P. Z.; Ji, Q. Q.; Zhang, L. L.; Zhao, S. Y.; Zhao, X. S. Acta Phys. -Chim. Sin. 2011, 27 (12), 2836.] [郭培志, 季倩倩, 张丽莉, 赵善玉, 赵修松. 物理化学学报, 2011, 27 (12), 2836.] doi: 10.3866/PKU.WHXB20112836
(7) Liu, P.; Verbrugge, M.; Soukiazian, S. Journal of Power Sources 2006, 156 (2), 712. doi: 10.1016/j.jpowsour.2005.05.055
(8) Chen, L.; Yuan, C.; Dou, H.; Gao, B.; Chen, S.; Zhang, X. Electrochimica Acta 2009, 54 (8), 2335. doi: 10.1016/j.electacta.2008.10.071
(9) Sun, Y.; Shi, G. Journal of Polymer Science Part B: Polymer Physics 2013, 51 (4), 231. doi: 10.1002/polb.23226
(10) Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. Angew. Chem. Int. Edit. 2012, 124 (45), 11533. doi: 10.1002/ange.201206554
(11) Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Adv. Mater. 2012, 24 (15), 2047. doi: 10.1002/adma.201104634
(12) Tanaka, S.; Nakatani, N.; Doi, A.; Miyake, Y. Carbon 2011, 49 (10), 3184. doi: 10.1016/j.carbon.2011.03.042
(13) Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X. Industrial & Engineering Chemistry Research 2013, 52 (30), 10181. doi: 10.1021/ie400862h
(14) Han, J.; Xu, G.; Ding, B.; Pan, J.; Dou, H.; MacFarlane, D. R. Journal of Materials Chemistry A 2014, 2 (15), 5352. doi: 10.1039/C3TA15271E
(15) Zhang, W.; Yang, F. K.; Pan, Z.; Zhang, J.; Zhao, B. Macromolecular Rapid Communications 2014, 35 (3), 350. doi: 10.1002/marc.201300761
(16) Ai, K. L.; Liu, Y. L.; Ruan, C. P.; Lu, L. H.; Lu, G. Q. Adv. Mater. 2013, 25 (7), 998. doi: 10.1002/adma.201203923
(17) Peterson, M. B.; Le-Masurier, S. P.; Lim, K.; Hook, J. M.; Martens, P.; Granville, A. M. Macromolecular Rapid Communications 2014, 35 (3), 291. doi: 10.1002/marc.201300746
(18) Gao, S.; Fan, H.; Chen, Y.; Li, L.; Bando, Y.; Golberg, D. Nano Energy 2013, 2 (6), 1261. doi: 10.1016/j.nanoen.2013.06.005
(19) Sevilla, M.; Valle-Vigón, P.; Fuertes, A. B. Advanced Functional Materials 2011, 21 (14), 2781. doi: 10.1002/adfm.201100291
(20) Xu, G.; Ding, B.; Nie, P.; Shen, L.; Wang, J.; Zhang, X. Chemistry-A European Journal 2013, 19 (37), 12306. doi: 10.1002/chem.201301352
(21) Xu, F.; Cai, R.; Zeng, Q.; Zou, C.; Wu, D.; Li, F.; Lu, X.; Liang, Y.; Fu, R. Journal of Materials Chemistry 2011, 21 (6), 1970. doi: 10.1039/C0JM02044C
(22) Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Nano Letters 2013, 13 (5), 2078. doi: 10.1021/nl400378j.
(23) Wang, D.W.; Li, F.; Yin, L. C.; Lu, X.; Chen, Z. G.; Gentle, I. R.; Lu, G. Q.; Cheng, H. M. Chemistry-A European Journal 2012, 18 (17), 5345. doi: 10.1002/chem.201102806
(24) Liu, D.; Zhang, X.; Sun, Z.; You, T. Nanoscale 2013, 5 (20), 9528. doi: 10.1039/C3NR03229A
(25) Hu, C.; Xiao, Y.; Zhao, Y.; Chen, N.; Zhang, Z.; Cao, M.; Qu, L. Nanoscale 2013, 5 (7), 2726. doi: 10.1039/C3NR34002C
(26) Han, J.; Xu, G.; Dou, H.; MacFarlane, D. R. Chemistry-A European Journal 2015, 21 (6), 2310. doi: 10.1002/chem.201404975

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] MENG Yan-Shuang, WANG Chen, WANG Lei, WANG Gong-Rui, XIA Jun, ZHU Fu-Liang, ZHANG Yue. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1915-1922.
[4] LI Ai-Jing, XIE Wei, WANG Ming, XU Si-Chuan. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R[J]. Acta Phys. Chim. Sin., 2017, 33(5): 927-940.
[5] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[6] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[7] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[8] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[9] DAI Yu-Yu, LI Wei-Jun, YAN Shuan-Ma, WANG Shi-Zhao, YU Yue, OUYANG Mi, CHEN Li-Tao, ZHANG Cheng. Dithenylpyrrole Structure Bridged with Phenyl or Biphenyl Rings:Molecular Configuration and Electrochromic Properties[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2268-2276.
[10] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[11] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[12] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1473-1481.
[13] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[14] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[15] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.