Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (4): 612-626    DOI: 10.3866/PKU.WHXB201502041
REVIEW     
Progress in Visible-Light Photocatalytic Hydrogen Production by Dye Sensitization
LIU Xing1,2, LI Yue-Xiang1, PENG Shao-Qin1, LAI Hua2
1 Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China;
2 Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, Hunan Province, P. R. China
Download:   PDF(1015KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Dye sensitization is an important strategy for broadening the excitation wavelength range of wideband- gap photocatalysts to use visible light from the sun. In this paper, the primary principle of dye-sensitized water splitting for hydrogen production was introduced, and the research progress in dye sensitizers, sensitized matrixes or supporters, the interaction between dyes and matrixes, co-catalysts for hydrogen evolution, and sacrificial electron donors were all reviewed. Moreover, the pathways of charge transmission and stability issues in dye-sensitized systems were discussed.



Key wordsPhotocatalytic hydrogen production      Dye sensitization      Sensitizer      Sensitized matrix      Stability     
Received: 15 December 2014      Published: 04 February 2015
MSC2000:  O643  
Fund:  

The project was supported by the National Nature Science Foundation of China (21163012), National Key Basic Research Program of China (973) (2009CB220003), Scientific Research Foundation of Hengyang Normal University, China (14B24), and Project of Science and Technology Bureau of Hengyang City, China (2014KJ18).

Corresponding Authors: LI Yue-Xiang     E-mail: liyx@ncu.edu.cn
Cite this article:

LIU Xing, LI Yue-Xiang, PENG Shao-Qin, LAI Hua. Progress in Visible-Light Photocatalytic Hydrogen Production by Dye Sensitization. Acta Phys. Chim. Sin., 2015, 31(4): 612-626.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201502041     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I4/612

(1) Fujishima, A.; Honda, K. Nature 1972, 37, 238.
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
(3) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
(4) Huang, Y. F.; Wu, J. H. Prog. Chem. 2006, 18 (7-8), 168. [黄昀方, 吴季怀. 化学进展, 2006, 18 (7-8), 168.]
(5) Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
(6) Osterloh, F. E. Chem. Mater. 2008, 20, 35. doi: 10.1021/cm7024203
(7) Li, Y. X.; Lü, G. X.; Li, S. B. J. Mol. Catal. (China) 2001, 15 (1), 72. [李越湘, 吕功煊, 李树本. 分子催化, 2001, 15 (1), 72.]
(8) Ni, M.; Leung, M. K. H.; Leung, D. Y. C. Chin. J. Power Sources 2006, 30 (10), 856. [倪萌, Leung, M. K. H., Leung, D. Y. C. 电源技术, 2006, 30 (10), 856. ]
(9) Zhang, X. J.; Li, S. B.; Lü, G. X. J. Mol. Catal. (China) 2012, 24 (6), 569. [张晓杰, 李树本, 吕功煊. 分子催化, 2012, 24 (6), 569.]
(10) Pei, D. H.; Luan, J. F. Int. J. Photoenergy 2012, 2012, 86.
(11) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, L. K. Renew. Sust. Energy Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009
(12) Justinyoungblood, W.; Anna, L. S.; Maeda, K.; Mallouk, T. E. Accounts Chem. Res. 2009, 42, 1966. doi: 10.1021/ar9002398
(13) O'Re gan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
(14) Du, P.W.; Eisenberg, R. Energy Environ. Sci. 2012, 5, 6012. doi: 10.1039/c2ee03250c
(15) Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J
(16) Pan, G. F. Modification of TiO2, ZnO and Their Performance of Photocatalytic Hydrogen Evolution under Visible Light. Masteral Dissertation, Nanchang University, Nanchang, 2007. [潘高峰. TiO2、ZnO的改性及其可见光催化制氢性能[D]. 南昌: 南昌大学, 2007.]
(17) Ji, R. Study on Hydrogen Production fromWater Photolysis Using Phthalocyanine Dye Sensitized Nano TiO2. Nanjing Agricultural University, Nanjing, 2007. [吉仁. 酞菁染料敏化纳米TiO2 光解水制氢的研究[D]. 南京: 南京农业大学, 2007.]
(18) Liang, M.; Tao, Z. L.; Chen, J. Chem. Online 2005, No. 12, 889. [梁茂, 陶占良, 陈军. 化学通报, 2005, No. 12, 889.]
(19) Fresno, F.; Hernández-Alonso, M. D. Green Energy Technol. 2013, 329.
(20) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063
(21) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613. doi: 10.1021/ja003299u
(22) Grätzel, M. Accounts Chem. Res. 1981, 14, 376. doi: 10.1021/ar00072a003
(23) Bi, Z. C.; Tien, H. T. Int. J. Hydrog. Energy 1984, 9, 717.
(24) Dhanalakshmi, K. B.; Latha, S.; Anandan, S.; Maruthamuthu, P. Int. J. Hydrog. Energy 2001, 26, 669.
(25) Zhang, X. H.; Veikko, U.; Mao, J.; Cai, P.; Peng, T. Y. Chem. Eur. J. 2012, 18, 12103. doi: 10.1002/chem.201200725
(26) Li, J.; E, Y.; Lian, L. S.; Ma, W. H. Int. J. Hydrog. Energy 2013, 38, 10746. doi: 10.1016/j.ijhydene.2013.02.121
(27) Kruth, A.; Hansen, S.; Beweries, T.; Bruser, V.; Weltmann, K. D. ChemSusChem 2013, 6, 152. doi: 10.1002/cssc.201200408
(28) Peng, T. Y.; Dai, K.; Yi, H. B.; Ke, D. N.; Cai, P.; Zan, L. Chem. Phys. Lett. 2008, 460, 216. doi: 10.1016/j.cplett.2008.06.001
(29) Bae, E.; Choi, W. J. Phys.Chem. B 2006, 110, 14792. doi: 10.1021/jp062540+
(30) Veikko, U.; Zhang, X. B.; Peng, T. Y.; Cai, P.; Cheng, G. Z. Spectrochim. Acta A 2013, 105, 539. doi: 10.1016/j.saa.2012.12.061
(31) Oman, E. S.; Navio, J.; Litter, M. J. Adv. Oxid. Tech. 1998, 3 (3), 261.
(32) Harriman, A.; Porter, G.; Marie-Claude, R. J. Chem. Soc., Faraday Trans. 2 1981, 77 (5), 833. doi: 10.1039/f29817700833
(33) Hagiwara, H.; Matsumoto, H.; Ishihara, T. Electrochemistry 2008, 76 (2), 125.
(34) Kim, W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H.; Choi, W. Energy Environ. Sci. 2010, 3, 1789. doi: 10.1039/c0ee00205d
(35) Astuti, Y.; Palomares, E.; Haque, S. A.; Durrant, J. R. J. Am. Chem. Soc. 2005, 127, 15120. doi: 10.1021/ja0533444
(36) Zhang, X. F.; Shen, T. Chem. Online 1995, No. 6, 8. [张先付, 沈涛. 化学通报, 1995, No. 6, 8.]
(37) López Arbeloa, I. Dyes Pigm. 1983, 4, 211.
(38) Valdes-Aguiiera, O.; Neckers, D. C. Accounts Chem. Res. 1989, 22, 171. doi: 10.1021/ar00161a002
(39) De, S.; Das, S.; Girigoswami, A. Spectrochim. Acta Part A 2005, 61, 1821. doi: 10.1016/j.saa.2004.06.054
(40) Yan, Z. P.; Yu, X. X.; Zhang, Y. Y.; Jia, H. X.; Sun, Z. J.; Du, P. W. Appl. Catal. B: Environ. 2014, 160 -161, 173.
(41) Pelet, S.; Grätzel, M.; Moser, J. E. J. Phys. Chem. B 2003, 107, 3215.
(42) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Colloid Interface Sci. 2009, 333, 285. doi: 10.1016/j.jcis.2009.01.013
(43) Zhang, X. J.; Tang, Z. Q.; Jin, Z. L.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2011, 27 (5), 1143. [张晓杰, 汤长青, 靳治良, 吕功煊, 李树本. 物理化学学报, 2011, 27 (5), 1143.] doi: 10.3866/PKU.WHXB20110511
(44) Kasche, V.; Lindqvist, L. Photochem. Photobiol. 1965, 4, 923. doi: 10.1111/php.1965.4.issue-5
(45) Shimidzu, T.; Iyoda, T.; Koide, Y. J. Am. Chem. Soc. 1985, 107, 35. doi: 10.1021/ja00287a007
(46) Birla, L.; Cristian, A. M.; Hillebrand, M. Spectrochim. Acta Part A 2004, 60, 551. doi: 10.1016/S1386-1425(03)00261-0
(47) Mau, A.W. H.; Johansen, O.; Sasse, W. H. F. Photochem. Photobiol. 1985, 41, 503. doi: 10.1111/php.1985.41.issue-5
(48) Heleg, V.; Willner, I. J. Chem. Soc., Chem. Commun. 1994, 2113.
(49) Gurunathan, K.; Maeuthamuthu, P.; Sastri, M. V. C. Int. J. Hydrog. Energy 1997, 22, 57. doi: 10.1016/S0360-3199(96) 00075-4
(50) Abe, R.; Sayama, K.; Arakawa, H. Chem. Phys. Lett. 2002, 362, 441. doi: 10.1016/S0009-2614(02)01140-5
(51) Xie, C. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Energiae Solaris Sin. 2007, 28 (9), 956. [谢称福, 李越湘, 彭绍琴, 吕功煊, 李树本. 太阳能学报, 2007, 28 (9), 956.]
(52) Chatterjee, D. Catal. Commun. 2010, 11, 336. doi: 10.1016/j.catcom.2009.10.026
(53) Sreethawong, T.; Junbua, C.; Chavade, S. J. Power Sources 2009, 190, 513. doi: 10.1016/j.jpowsour.2009.01.054
(54) Abe, R.; Sayama, K.; Arakawa, H. J. J. Photochem. Photobiol. A: Chem. 2004, 166, 115. doi: 10.1016/j.jphotochem. 2004.04.031
(55) Liu, F. S.; Ji, R.; Wu, M.; Sun, Y. M. Acta Phys. -Chim. Sin. 2007, 23 (12), 1899. [刘福生, 吉仁, 吴敏, 孙岳明. 物理化学学报, 2007, 23 (12), 1899.] doi: 10.3866/PKU. WHXB20071213
(56) Maia, D. L. S.; Pepe, I.; Ferreirada Silva, A.; Silva, L. A. J. Photochem. Photobiol. A: Chem. 2012, 243, 61. doi: 10.1016/j.jphotochem.2012.06.008
(57) Zhang, G.; Choi, W. Chem. Commun. 2012, 48, 10621. doi: 10.1039/c2cc35751h
(58) Yang, J. B.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y. J.; Yi, C. Y.; Comte, P.; Pei, K.; Holcombe, T.W.; Nazeeruddin, M. K.; Hua, J. L.; Zakeeruddin, S. M.; Tian, H.; Grätzel, M. J. Am. Chem. Soc. 2014, 136, 5722. doi: 10.1021/ja500280r
(59) Cai, Z. X.; Luo, H.W.; Qi, P. L.; Wang, J. G.; Zhang, G. X.; Liu, Z. T.; Zhang, D. Q. Macromolecules 2014, 47, 2899.
(60) Li, H.; Wu, Y. Z.; Geng, Z. Y.; Liu, J. C.; Xu, D. D.; Zhu, W. H. J. Mater. Chem. A 2014, 2, 14649.
(61) Zhang, X. H.; Peng, T. Y.; Yu, L. J.; Li, R. J.; Li, Q. Q.; Li, Z. ACS Catal. 2015, 5, 504.
(62) Zhao, W.; Hou, Y. J.; Wang, X. S.; Zhang, B.W.; Cao, Y.; Yang, R.; Wang, W. B.; Xiao, X. R. Sol. Energy Mate. Sol. Cells 1999, 58, 173. doi: 10.1016/S0927-0248(98)00201-3
(63) Min, S. X.; Lü, G. X. Int. J. Hydrog. Energy 2012, 37, 10564.
(64) Li, B.; Lü, G. X. J. Mol. Catal. (China) 2013, 27 (2), 181. [李波, 吕功煊. 分子催化, 2013, 27 (2), 181.]
(65) Liu, X.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Photochem. Photobiol. Sci. 2013, 12, 1903. doi: 10.1039/c3pp50167a
(66) Maeda, K.; Eguchi, M.; Youngblood, J.; Mallouk, T. E. Chem. Mater. 2008, 20, 6770. doi: 10.1021/cm801807b
(67) Chen, Y. J.; Mou, Z. G.; Yin, S. L.; Huang, H.; Yang, P.; Wang, X. M.; Du, Y. K. Mater. Lett. 2013, 107, 31. doi: 10.1016/j.matlet.2013.05.065
(68) Choi, S. K.; Kim, S.; Ryu, J.; Lim, S. K.; Park, H. Photochem. Photobiol. Sci. 2012, 11, 1437. doi: 10.1039/c2pp25054c
(69) Perera, V. P. S.; Senadeera, G. K. R.; Tennakone, K. S. J. Colloid Interface Sci. 2003, 265, 428.
(70) Puangpetch, T.; Sommakettarin, P.; Chavadej, S.; Sreethawong, T. Int. J. Hydrog. Energy 2010, 35, 12428. doi: 10.1016/j.ijhydene.2010.08.138
(71) Li, Q. Y.; Jin, Z. L.; Peng, Z. G.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Phys. Chem. C 2007, 111, 8237. doi: 10.1021/jp068703b
(72) Li, Q. Y.; Chen, L.; Lu, G. X. J. Phys. Chem. C 2007, 111, 11494. doi: 10.1021/jp072520n
(73) Li, Q. Y.; Lu, G. X. J. Mol. Catal. A: Chem. 2007, 266, 75. doi: 10.1016/j.molcata.2006.10.047
(74) Liu, X.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2012, 37, 12150. doi: 10.1016/j.ijhydene.2012.06.028
(75) Min, S. X.; Lu, G. X. J. Phys. Chem. C 2011, 115, 13938. doi: 10.1021/jp203750z
(76) Zhang, W. Y.; Li, Y. X.; Peng, S. Q.; Cai, X. Beilstein J. Nanotechnol. 2014, 5, 801. doi: 10.3762/bjnano.5.92
(77) Min, S. X.; Lu, G. X. J. Phys. Chem. C 2012, 116, 19644. doi: 10.1021/jp304022f
(78) Xu, J. Y.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Phys. Chem. Chem. Phys. 2013, 15, 7657. doi: 10.1039/c3cp44687e
(79) Xu, J. Y.; Li, Y. X.; Peng, S. Q. Int. J. Hydrog. Energy 2015, 40, 353. doi: 10.1016/j.ijhydene.2014.10.150
(80) Zhang, J.; Liu, X. H. Phys. Chem. Chem. Phys. 2014, 16, 8655. doi: 10.1039/c4cp00084f
(81) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. Appl. Surf. Sci. 2008, 254, 4452. doi: 10.1016/j.apsusc.2008.01.038
(82) Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Energy Environ. Sci. 2009, 2, 397. doi: 10.1039/b814539c
(83) Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2012, 134, 7211. doi: 10.1021/ja300539p
(84) Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. Angew. Chem. Int. Edit. 2012, 51, 7440. doi: 10.1002/anie.201202471
(85) Kim, W.; Tachikawa, T.; Majima, T. J. Phys. Chem. C 2009, 113, 10603.
(86) Jin, Z. L.; Zhang, X. J.; Li, Y. X.; Li, S. B.; Lu, G. X. Catal. Commun. 2007, 8, 1267. doi: 10.1016/j.catcom.2006.11.019
(87) Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. J. Mol. Catal. A: Chem. 2008, 282, 117. doi: 10.1016/j.molcata.2007.12.005
(88) Guo, M. M.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2009, 5 (40), 802. [郭苗苗, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2009, 5 (40), 802.]
(89) Li, Y. X.; Guo, M. M.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2009, 34, 5629. doi: 10.1016/j.ijhydene.2009.05.100
(90) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Power Sources 2007, 166, 74. doi: 10.1016/j.jpowsour.2006.12.082
(91) Zeng, L. Y.; Dai, S. Y.; Wang, K. J.; Shi, C.W.; Kong, F. T.; Hu, L. H.; Pan, X. Acta Phys. Sin. 2005, 54 (1), 53. [曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘旭. 物理学报, 2005, 54 (1), 53.]
(92) Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S. J. Electroanal. Chem. 1995, 396, 27. doi: 10.1016/0022-0728(95)04185-Q
(93) Abe, R.; Hara, K.; Sayama, K.; Domen, K.; Arakawa, H. J. Photochem. Photobiol. A: Chem. 2000, 137, 63. doi:10.1016/S1010-6030(00)00351-8
(94) Fung, A. K. M.; Chiu, B. K.W.; Lam, M. H.W. Water Res. 2003, 37, 1939. doi: 10.1016/S0043-1354(02)00567-5
(95) Chen, Y. S.; Li, C.; Zeng, Z. H.; Wang, W. B.; Wang, X. S.; Zhang, B.W. J. Mater. Chem. 2005, 15, 1654. doi: 10.1039/b418906j
(96) Regazzoni, A. E.; Mandelbaum, P.; Matsuyoshi, M.; Schiller, S.; Bilmes, S. A.; Blesa, M. A. Langmuir 1998, 14, 868. doi: 10.1021/la970665n
(97) Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. J. Photochem. Photobiol. A: Chem. 2003, 160, 61. doi: 10.1016/S1010-6030(03)00222-3
(98) Kalyanasundaram, K.; Grätzel, M. Coord. Chem. Rev. 1998, 77, 347.
(99) Peng, T. Y.; Ke, D. N.; Cai, P.; Dai, K.; Ma, L.; Zan, L. J. Power Sources 2008, 180, 498. doi: 10.1016/j.jpowsour.2008.02.002
(100) Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093. doi: 10.1021/jp047777p
(101) Jin, Z. L.; Zhang, X. J.; Lu, G. X.; Li, S. B. J. Mol. Catal. A: Chem. 2006, 259, 275. doi: 10.1016/j.molcata.2006.06.035
(102) Min, S. X.; Lu, G. X. J. Phys. Chem. C 2012, 116, 25415. doi: 10.1021/jp3093786
(103) Kong, C.; Min, S. X.; Lu, G. X. Int. J. Hydrog. Energy 2014, 39, 4836. doi: 10.1016/j.ijhydene.2014.01.089
(104) Kang, S, Z.; Chen, L. L.; Li, X. Q.; Mu, J. Appl. Surf. Sci. 2012, 258, 6029. doi: 10.1016/j.apsusc.2012.02.118
(105) Mu. J.; Chen, L. L.; Kang, S. Z.; Li, X. Q. Chin. J. Inorg. Chem. 2012, 28 (2), 251. [穆劲, 陈丽莉, 康诗钊, 李向清. 无机化学学报, 2012, 28 (2), 251.]
(106) Li, X. Q.; Zhang, J.; Kang, S. Z.; Li, G. D.; Mu, J. Ceram. Int. 2014, 40, 10171. doi: 10.1016/j.ceramint.2014.02.055
(107) Zhang, W.; Xu, R. Int. J. Hydrog. Energy 2012, 37, 17899. doi: 10.1016/j.ijhydene.2012.08.150
(108) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Phys. Chem. C 2009, 113, 2630. doi: 10.1021/jp8085717
(109) Nada, A. A.; Hamed, H. A.; Barakat, M. H.; Mohamed, N. R.; Veziroglu, T. N. Int. J. Hydrog. Energy 2008, 33, 3264. doi: 10.1016/j.ijhydene.2008.04.027
(110) Abe, R.; Sayama, K.; Arakawa, H. Chem. Phys. Lett. 2003, 379, 230. doi: 10.1016/j.cplett.2003.07.026
(111) Kalyanasundaram, K.; Kiwi, J.; Grätzel, M. HeIv. Chim. Acta 1978, 61, 2720.
(112) Han, Z. J.; McNamara, W. R.; Eum, M.; Holland, P. L.; Eisenberg, R. Angew. Chem. Int. Edit. 2012, 51, 1667. doi: 10.1002/anie.v51.7
(113) McCormick, T. M.; Calitree, B. D.; Orchard, A.; Kraut, N. D.; Bright, F. V.; Detty, M. R.; Eisenberg, R. J. Am. Chem. Soc. 2010, 132, 15480. doi: 10.1021/ja1057357
(114) Lazarides, T.; McCormick, T.; Du, P.W.; Luo, G. G.; Lindley, B.; Eisenberg, R. J. Am. Chem. Soc. 2009, 131, 9192. doi: 10.1021/ja903044n
(115) Krishnan, C. V.; Sutin, N. J. Am. Chem. Soc. 1981, 103, 2141. doi: 10.1021/ja00398a066
(116) Probst, B.; Guttentag, M.; Rodenberg, A.; Hamm, P.; Alberto, R. Inorg. Chem. 2011, 50, 3404. doi: 10.1021/ic102317u
(117) Zhu, M. S.; Li, Z.; Du, Y. K.; Mou, Z. G.; Yang, P. ChemCatChem 2012, 4, 112. doi: 10.1002/cctc.v4.1
(118) Hori, H.; Ishihara, J.; Koike, K.; Takeuchi, K.; Ibusuki, T.; Ishitani, O. J. Photochem. Photobiol. A: Chem. 1999, 120, 119. doi: 10.1016/S1010-6030(98)00430-4
(119) Li, B.; Lü, G. X. Acta Phys. -Chim. Sin. 2013, 29 (8), 1778. [李波, 吕功煊. 物理化学学报, 2013, 29 (8), 1778.] doi: 10.3866/PKU.WHXB201305302
(120) Hong, J. D.; Wang, Y. B.; Pan, J. S.; Zhong, Z. Y.; Xu, R. Nanoscale 2011, 3, 4655. doi: 10.1039/c1nr10628g
(121) Liu, X.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2013, 38, 11709. doi: 10.1016/j.ijhydene.2013.06.095
(122) Wang, J. L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630. doi: 10.1021/cs3005874
(123) Roy, N.; Sohn, Y.; Pradhan, D. ACS Nano 2013, 7, 2532. doi: 10.1021/nn305877v
(124) Liu, C.; Han, X. G.; Xie, S. F.; Kuang, Q.; Wang, X.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Chem. Asian J. 2013, 8, 282.
(125) Gu, L. A.; Wang, J. Y.; Cheng, H.; Du, Y. C.; Han, X. J. Chem. Commun. 2012, 48, 6 978.
(126) Abe, R.; Shinmei, K.; Koumura, N.; Hara, K.; Ohtani, B. J. Am. Chem. Soc. 2013, 135, 16872. doi: 10.1021/ja4048637
(127) Lee, J.; Kwak, J.; Ko, K. C.; Park, J. H.; Ko, J. H.; Park, N.; Kim, E.; Ryu, D. H.; Ahn, T. K.; Lee, J. Y.; Son, S. U. Chem. Commun. 2012, 48, 11431. doi: 10.1039/c2cc36501d
(128) Kumari, A.; Mondal, I.; Pal, U. New J. Chem. 2015, 39, 713. doi: 10.1039/C4NJ01436G

[1] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[2] GONG Linji, XIE Jiani, ZHU Shuang, GU Zhanjun, ZHAO Yuliang. Application of Multifunctional Nanomaterials in Tumor Radiosensitization[J]. Acta Phys. Chim. Sin., 2018, 34(2): 140-167.
[3] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1781-1788.
[4] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[5] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1453-1461.
[6] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[7] GU Jin-Yu, QI Peng-Wei, PENG Yang. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1379-1389.
[8] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[9] PENG Xue-Feng, LEI Yong, LIU Zhen, JI Xia-Xia, FAN Chang-Jun, YANG Xiao-Hui. Sensitized, Thermally Activated, Delayed Fluorescence Devices Based on a Polymer Host Material[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2369-2376.
[10] SHAI Xu-Xia, LI Dan, LIU Shuang-Shuang, LI Hao, WANG Ming-Kui. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2159-2170.
[11] WENG Xiao-Long, WANG Yan, JIA Chun-Yang, WAN Zhong-Quan, CHEN Xi-Ming, YAO Xiao-Jun. Theoretical Investigation of Novel Tetrathiafulvalene- Triphenylamine Sensitizers[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1990-1998.
[12] XIAO Juan, ZHANG Hao-Li. Recent Progress in Organic-Inorganic Hybrid Perovskite Materials for Luminescence Applications[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1894-1912.
[13] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2045-2051.
[14] LI Hong-Mei, LAN Li, CHEN Shan-Hu, LIU Da-Yu, WANG Wei, GONG Mao-Chu, CHEN Yao-Qiang. Preparation of CeO2-ZrO2-Al2O3 with a Composite Precipitant and Its Supported Pd-Only Three-Way Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1734-1746.
[15] DANG Cheng-Xiong, YANG Hao-Bo, YU Hao, WANG Hong-Juan, PENG Feng. CexNi0.5La0.5-xO Catalysts for Hydrogen Production by Oxidative Steam Reforming of Glycerol: Influence of the Ce-to-La Ratio[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1527-1533.