Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (4): 783-792    DOI: 10.3866/PKU.WHXB201502062
Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure
LI Xiang-Qi1, FAN Qing-Fei1, LI Guang-Li1, HUANG Yao-Han1, GAO Zhao1, FAN Xi-Mei1, ZHANG Chao-Liang2, ZHOU Zuo-Wan1
1 Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China;
2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610031, P. R. China
Download:   PDF(1352KB) Export: BibTeX | EndNote (RIS)      


A low-temperature hydrothermal route was applied to fabricate ZnO nano-arrays on fluorinated tin oxide (FTO)-coated glass substrates. The effects of the molar ratios of the precursor concentrations on the ZnO nano-arrays were studied with respect to morphology, optical properties, and growth mechanism. The results show that the length reduced with the increased molar ratios of precursor concentrations, and the diameter first increased then decreased. In general, the change of optical band gap followed the same trend as that for the change in diameter. When the molar ratio of precursor concentrations is 5:5, the optical band gap is 3.2 eV, which is similar to the theoretical value at room temperature. We propose that the optimal molar ratio of zinc nitrate (Zn(NO3)2) to hexamethylenetetramine (HMT, C6H12N4) is 5:5 for the preparation of ZnO nano-arrays. Spike-shaped CuO/ZnO nano-arrays were also successfully synthesized using a two-step solution-system method. Field emission scanning electron microscope (FE-SEM) results show that there were a large number of copper oxide (CuO) nano-particles (NPs) deposited onto the ZnO nano-array surfaces to form spike-shaped structures. The covered CuO NPs exhibited improved photocatalytic properties over pure ZnO nano-arrays under UV irradiation, and the possible photocatalytic mechanism of the CuO/ZnO nano-heterojunction was discussed in detail.

Key wordsZnO nano-array      CuO/ZnO heterostructure      Hydrothermal method      Optical property      Molar ratio     
Received: 15 December 2014      Published: 06 February 2015
MSC2000:  O645  

The project was supported by the High-Tech Research and Development Program of China (2009AA03Z427).

Corresponding Authors: FAN Xi-Mei     E-mail:
Cite this article:

LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure. Acta Phys. Chim. Sin., 2015, 31(4): 783-792.

URL:     OR

(1) Zhang, C. H.; Wang, G. F.; Liu, M.; Feng, Y. H.; Zhang, Z. D.; Fang, B. Electrochim. Acta 2010, 55 (8), 2835. doi: 10.1016/j.electacta.2009.12.068
(2) Jiang, C. Y.; Sun, X.W.; Lo, G. Q.; Kwong, D. L. Appl. Phys. Lett. 2007, 90 (26), 263501. doi: 10.1063/1.2751588
(3) Zhang, Y. Z.; Liu, Y. P.; Wu, L. H.; Li, H.; Han, L. Z.; Wang, B. C.; Xie, E. Q. Appl. Surf. Sci. 2009, 255 (9), 4801. doi: 10.1016/j.apsusc.2008.11.091
(4) Yang, P. D.; Yan, H. Q.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R. H.; Choi, H. J. Adv. Funct. Mater. 2002, 12 (5), 323. doi: 10.1002/1616-3028 (20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
(5) Liu, C. H.; Zapien, J. A.; Yao, Y.; Meng, X. M.; Lee, C. S.; Fan, S. S.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15 (10), 838. doi: 10.1002/adma.200304430
(6) Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J. Appl. Phys. Lett. 2002, 81 (19), 3648. doi: 10.1063/1.1518810
(7) Zhu, S. B.; Chen, X. N.; Zuo, F. B.; Jiang, M.; Zhou, Z.W. J. Solid State Chem. 2013, 197, 69. doi: 10.1016/j.jssc.2012.09.001
(8) Kuo, T. J.; Lin, C. N.; Kuo, C. L.; Huang, M. H. Chem. Mater. 2007, 19 (21), 5143. doi: 10.1021/cm071568a
(9) Zhai, X. H.; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. -Chim. Sin. 2010, 26 (3), 663. [翟晓辉, 龙绘锦, 董江舟, 曹亚安. 物理化学学报, 2010, 26 (3), 663.] doi: 10.3866/PKU.WHXB20100317
(10) Elias, J.; Lévy-Clément, C.; Bechelany, M.; Michler, J.; Wang, G.; Wang, Z.; Philippe, L. Adv. Mater. 2010, 22 (14), 1607. doi: 10.1002/adma.200903098
(11) Lyu, S. C.; Zhang, Y.; Lee, C. J.; Ruh, H.; Lee, H. J. Chemistry of Materials 2003, 15 (17), 3294. doi: 10.1021/cm020465j
(12) Kang, S.W.; Mohanta, S. K.; Kim, Y. Y.; Cho, H. K. Crystal Growth and Design 2008, 8 (5), 1458. doi: 10.1021/cg701216f
(13) Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Chemical Physics Letters 2004, 396 (1), 21.
(14) Gao, Y. F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Crystal Growth and Design 2007, 7 (12), 2467. doi: 10.1021/cg060934k
(15) Liu, B.; Zeng, H C. Journal of the American Chemical Society 2003, 125 (15), 4430. doi: 10.1021/ja0299452
(16) Kumar, P. S.; Raj, A. D.; Mangalaraj, D.; Nataraj, D. Applied Surface Science 2008, 255 (5), 2382. doi: 10.1016/j.apsusc.2008.07.136
(17) Liu, Z. Y.; Bai, H.W.; Sun, D. D. Int. J. Photoenergy 2011, 2012.
(18) Yan, W. P.; Wang, D. J.; Chen, L. P.; Lu, Y. C.; Xie, T. F.; Lin, Y. H. Acta Phys. -Chim. Sin. 2013, 29 (5), 1021. [闫伟平, 王德军, 陈礼平, 卢永春, 谢腾峰, 林艳红. 物理化学学报, 2013, 29 (5), 1021.] doi: 10.3866/PKU.WHXB201303043
(19) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26 (11), 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26 (11), 2927.] doi: 10.3866/PKU.WHXB20101113
(20) Wang, J.; Fan, X. M.; Wu, D. Z.; Dai, J.; Liu, H. R.; Zhou, Z.W. Appl. Surf. Sci. 2011, 258 (5), 1797. doi: 10.1016/j.apsusc.2011.10.048
(21) Koffyberg, F. P.; Benko, F. A. J. Appl. Phys. 1982, 53 (2), 1173. doi: 10.1063/1.330567
(22) Wang, L.; Han, K.; Song, G.; Yang, X.; Tao, M. Characterization of Electro-Deposited CuO as a Low-Cost Material for High-Efficiency Solar Cells. In Photovoltaic Energy Conversion; the 2006 IEEE 4thWorld Conference, Singapore, 2006; IEEE, 2006, 1, 130-133.
(23) Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kang, J.; Paul, B. J.; Singh, N. K.; Song, J.; Kim, J. J. Power Sources 2013, 244, 435. doi: 10.1016/j.jpowsour.2012.11.112
(24) Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. Chem. Eng. J. 2013, 228, 631. doi: 10.1016/j.cej.2013.05.035
(25) Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G. C.; Kock, A.; Freudenberg, O.; Gspan, C.; Grogger, W.; Neuhold, A.; Resel, R. Sensor Actuat. B-Chem. 2013, 187, 50. doi: 10.1016/j.snb.2012.09.034
(26) Anandan, S.; Wen, X. G.; Yang, S. H. Mater. Chem. Phys. 2005, 93 (1), 35. doi: 10.1016/j.matchemphys.2005.02.002
(27) Kim, J.; Kim, W.; Yong, K. J. Phys. Chem. C 2012, 116 (29), 15682. doi: 10.1021/jp302129j
(28) Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ACS Nano 2013, 7 (12), 11112. doi: 10.1021/nn404838n
(29) Jung, S.; Yong, K. Chem. Commun. 2011, 47 (9), 2643. doi: 10.1039/c0cc04985a
(30) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4 (6), 455. doi: 10.1038/nmat1387
(31) Goldie, W. Plating 1964, 51 (11), 1069.
(32) Jung, J.; Myoung, J.; Lim, S. Thin Solid Films 2012, 520 (17), 5779. doi: 10.1016/j.tsf.2012.04.052
(33) Zhu, K. X.; Wang, W. J.; Chen, X. L.; Liu, J.; Song, B.; Jiang, L. B.; Guo, J. G.; Cheng, J. Y. J. Alloy. Compd. 2011, 509 (24), 6942. doi: 10.1016/j.jallcom.2011.04.007
(34) Chen, Z. T.; Gao, L. J. Cryst. Growth 2006, 293 (2), 522. doi: 10.1016/j.jcrysgro.2006.05.082
(35) Lee, Y. L.; Zhang, Y.; Ng, S. L. G.; Kartawidja, F. C.; Wang, J. J. Am. Ceram. Soc. 2009, 92 (9), 1940. doi: 10.1111/jace.2009.92.issue-9
(36) Wang, Z. L. Mater. Today 2004, 7 (6), 26. doi: 10.1016/S1369-7021(04)00286-X
(37) Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105 (17), 3350. doi: 10.1021/jp010026s
(38) Pankove, J. I. Optical Process in Semiconductor; Dover Publications: New York, 2012.
(39) Wang, B. L.; Zhao, J. J.; Jia, J. M.; Shi, D. N.; Wan, J. G.; Wang, G. H. Appl. Phys. Lett. 2008, 93 (2), 021918. doi: 10.1063/1.2951617
(40) Schmidt, T. M.; Miwa, R. H. Nanotechnology 2009, 20 (21), 215202. doi: 10.1088/0957-4484/20/21/215202
(41) Zheng, J.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. J. Solid State Chem. 2009, 182 (1), 115. doi: 10.1016/j.jssc.2008.10.009
(42) Ai, Z. H.; Zhang, L. Z.; Lee, S. C.; Ho, W. K. J. Phys. Chem. C 2009, 113 (49), 20896. doi: 10.1021/jp9083647
(43) Borgohain, K.; Murase, N.; Mahamuni, S. J. Appl. Phys. 2002, 92 (3), 1292. doi: 10.1063/1.1491020
(44) Li, B. X.; Wang, Y. F. Superlattice Microst. 2010, 47 (5), 615. doi: 10.1016/j.spmi.2010.02.005
(45) Sakai, Y.; Ninomiya, S.; Hiraoka, K. Surf. Int. Anal. 2012, 44 (8), 938. doi: 10.1002/sia.4843
(46) Capece, F. M.; Castro, V. D.; Furlani, C.; Mattogno, G. J. Electron. Spectrosc. 1982, 27 (2), 119. doi: 10.1016/0368-2048(82)85058-5
(47) Wan, Y.; Zhang, Y. D.; Wang, X. L.; Wang, Q. Electrochem. Commun. 2013, 36, 99. doi: 10.1016/j.elecom.2013.09.026
(48) Xiang, F. M.; Wu, J.; Liu, L.; Huang, T.; Wang, Y.; Chen, C.; Peng, Y.; Jiang, C. X.; Zhou, Z.W. Polym. Adv. Technol. 2011, 22 (12), 2533. doi: 10.1002/pat.v22.12
(49) Saravanan, R.; Karthikeyan, S.; Gupta, V. K.; Sekaran, G.; Narayanan, V.; Stephen, A. Mater. Sci. Eng. C 2013, 33 (1), 91. doi: 10.1016/j.msec.2012.08.011
(50) Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. J. Photochem. Photobiol. A 1995, 85 (3), 247. doi: 10.1016/1010-6030(94)03906-B
(51) Wei, S. Q.; Chen, Y. Y.; Ma, Y. Y.; Shao, Z. C. J. Mol. Catal. AChem. 2010, 331 (1), 112.
(52) Li, J.; Wang, J.; Huang, L.; Lu, G. D. Photochem. Photobiol. Sci. 2010, 9 (1), 39. doi: 10.1039/b9pp00084d
(53) Chandrinou, C.; Boukos, N.; Stogios, C.; Travlos, A. Microelectron. J. 2009, 40 (2), 296. doi: 10.1016/j.mejo.2008.07.024
(54) Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Angew. Chem. Int. Edit. 2003, 42 (26), 3031. doi: 10.1002/anie.200351461

[1] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. Chim. Sin., 2018, 34(3): 296-302.
[2] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[3] LIAO Pei-Yi, ZHANG Chen, ZHANG Li-Jun, YANG Yan-Zhang, ZHONG Liang-Shu, GUO Xiao-Ya, WANG Hui, SUN Yu-Han. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1672-1680.
[4] XU Li-Hong, ZHAO Dong-Yu, LI Yang, GUO Lin. Improvement of the Electro-Optical Properties of Nematic Liquid Crystals by Doping with ZIF-8 Materials[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2377-2382.
[5] WANG Han, WANG Xiao-Min. Effect of Preparation Conditions on the Optical Properties of PEI-Functionalized Graphene Quantum Dots[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1267-1272.
[6] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[7] HU Wei, WANG Yun, SHANG Hong-Yan, XU Hai-Di, ZHONG Lin, CHEN Jian-Jun, GONG Mao-Chu, CHEN Yao-Qiang. Effects of Zr Addition on the Performance of the Pd-Pt/Al2O3 Catalyst for Lean-Burn Natural Gas Vehicle Exhaust Purification[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1771-1779.
[8] YUAN Jun-Hui, GAO Bo, WANG Wen, WANG Jia-Fu. First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1302-1308.
[9] SHI Chen-Yang, HE Hui-Bin, HONG Zan-Fa, ZHAN Hong-Bing, FENG Miao. Effect of HCl Post-Treatment on Morphology of Hydrothermally Prepared Titanate Nanomaterials with Optical Limiting Properties[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1430-1436.
[10] JIANG Xiao-Jia, JIA Jian-Ming, LU Han-Feng, ZHU Qiu-Lian, HUANG Hai-Feng. Preparation and Characterization of Sr/TiO2 Catalysts with Different Structures and High Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1399-1405.
[11] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1421-1429.
[12] QIU Kun-Zan, GUO Wen-Wen, WANG Hai-Xia, ZHU Ling-Jun, WANG Shu-Rong. Influence of Catalyst Structure on Performance of Cu/SiO2 in Hydrogenation of Methyl Acetate[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1129-1136.
[13] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1105-1112.
[14] ZHU Chang-Li, WANG Wen-Yong, TIAN Dong-Mei, WANG Jiao, QIU Yong-Qing. Second-Order Nonlinear Optical Properties of Bis-Cyclometalated Iridium(Ⅲ) Isocyanide Complexes[J]. Acta Phys. Chim. Sin., 2015, 31(2): 245-252.
[15] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.