Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2015,Vol.31>> Issue(4)>> 793-799     doi: 10.3866/PKU.WHXB201503021         中文摘要
CATALYSIS AND SURFACE SCIENCE
TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking
ZHAO Shu-Heng1,2, LANG Lin1, YIN Xiu-Li1, YANG Wen-Shen1, WU Chuang-Zhi1
1 CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Full text: PDF (928KB) Export: BibTeX | EndNote (RIS)

Zeolite membranes, especially the MFI-type zeolite membranes, have attracted significant attention for decades because of their special properties. While organic templates such as tetrapropylammonium hydroxide (TPAOH) have typically been used for the synthesis of ZSM-5 zeolite and zeolite membranes, the templates remain trapped in the as-synthesized zeolite crystals. A common method for removing organic templates and generating porous frameworks is calcination; however, during this process, the channel structure may be affected. In particular, for ZSM-5 membranes, membrane defects may be produced and the separation efficiency therefore may decrease to some extent. In this study, the low-temperature hydrocracking of TPAOH in ZSM-5 zeolite crystals was studied under H2/N2, while N2 adsorption, thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, temperature-programmed desorption of ammonia (NH3-TPD), and Raman spectroscopy were used to characterize zeolite samples. The results show that the organic template in the pores of ZSM-5 can be effectively removed below 350 ℃ by low-temperature hydrocracking. Characterization analyses by BET specific surface area, TG, FTIR, and Raman spectroscopy demonstrated that a reducing atmosphere containing H2 was more conducive to template removal at low temperature than atmospheres of air or N2. The degree of template removal increased with temperature increasing. The BET surface area of the crystal after hydrocracking at 280 ℃ reached 252 m2·g-1, although a small amount of organic residue remained. Furthermore, after hydrocracking at 350 ℃, the BET surface area reached 399m2·g-1, and only trace amount of inorganic carbon residue remained. In addition, the introduction of hydrogen at low temperatures could prevent coke deposits on acid sites and thus ZSM-5 zeolite crystals had greater numbers of acidic sites after low-temperature hydrocracking.



Keywords: ZSM-5 zeolite   Template removal   Low-temperature hydrocracking   High Si/Al ratio   Tetrapropylammonium hydroxide  
Received: 2014-10-28 Accepted: 2015-02-23 Publication Date (Web): 2015-03-02
Corresponding Authors: YIN Xiu-Li Email: xlyin@ms.giec.ac.cn

Fund: The project was supported by the National Natural Science Foundation of China (51106165, 51202245) and Guangdong Natural Science Foundation, China (10251007006000000, S2013010014896)

Cite this article: ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Phys. -Chim. Sin., 2015,31 (4): 793-799.    doi: 10.3866/PKU.WHXB201503021

(1) Eslava, S.; Urrutia, J.; Busawon, A. N.; Baklanov, M. R.; Iacopi, F.; Aldea, S.; Maex, K.; Martens, J. A.; Kirschhock, C. E. A. J. Am. Chem. Soc. 2008, 130, 17528. doi: 10.1021/ja8066572
(2) Yordanov, I.; Knoerr, R.; DeWaele, V.; Bazin, P.; Thomas, S.; Rivallan, M.; Lakiss, L.; Metzger, T. H.; Mintova, S. J. Phys. Chem. C 2010, 114, 20974. doi: 10.1021/jp105490g
(3) Wang, Z. X.; Yan, W. F.; Tian, D. Y.; Cao, X. J.; Yu, J. H.; Xu, R. R. Acta Phys. -Chim. Sin. 2010, 26, 2044. [王周翔, 闫文付, 田大勇, 曹学静, 于吉红, 徐如人. 物理化学学报, 2010, 26, 2044.] doi: 10.3866/PKU.WHXB20100714
(4) Zhang, Y. F.; Tokay, B.; Funke, H. H.; Falconer, J. L.; Noble, R. D. J. Membr. Sci. 2010, 363, 29. doi: 10.1016/j.memsci.2010.06.054
(5) Yuan, W. H.; Chang, R. R.; Liu, X. C.; Li, L. Acta Phys. -Chim. Sin. 2011, 27, 2493. [袁文辉, 常然然, 刘晓晨, 李莉. 物理化学学报, 2011, 27, 2493.] doi: 10.3866/PKU.WHXB20110917
(6) Gascon, J.; Kapteijn, F.; Zornoza, B.; Sebastián, V.; Casado, C.; Coronas, J. Chem. Mater. 2012, 24, 2829. doi: 10.1021/cm301435j
(7) Hinkle, K. R.; Jameson, C. J.; Murad, S. J. Phys. Chem. C 2014, 118, 23803. doi: 10.1021/jp507155s
(8) Chen, H. L.; Li, Y. S.; Zhu, G. Q.; Yang, W. S. Sci. China Ser. B -Chem. 2009, 52, 579.
(9) Zhong, Y. J.; Xu, X. H.; Xiao, Q.; Jiang, L.; Zhu, W. D.; Ma, C. A. Acta Phys. -Chim. Sin. 2008, 24, 1875. [钟依均, 许晓华, 肖强, 姜丽, 朱伟东, 马淳安. 物理化学学报, 2008, 24, 1875.] doi: 10.3866/PKU.WHXB20081023
(10) Li, X. M.; Yan, Y. S.; Wang, Z. B. Ind. Eng. Chem. Res. 2010, 49, 5933. doi: 10.1021/ie1000136
(11) Lang, L.; Zhang, C.; Yin, X. L.; Wu, C. Z. Prog. Chem. 2011, 23, 1022. [郎林, 张超, 阴秀丽, 吴创之. 化学进展, 2011, 23, 1022.]
(12) Li, X. M.; Wang, Z. B.; Zheng, J.; Shao, S. Q.; Wang, Y. C.; Yan, Y. S. Chin. J. Catal. 2011, 32, 217. [李显明, 王正宝, 郑洁, 邵世群, 王胤超, 严玉山. 催化学报, 2011, 32, 217.] doi: 10.1016/S1872-206 (10)60167-2
(13) Jin, W. Y.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L. Acta Phys. -Chim. Sin. 2013, 29, 139. [金炜阳, 程党国, 陈丰秋, 詹晓力. 物理化学学报, 2013, 29, 139.] doi: 10.3866/PKU. WHXB201210263
(14) Wang, Z.; Yu, T.; Nian, P.; Zhang, Q. C.; Yao, J. K.; Li, S.; Gao, Z. N.; Yue, X. L. Langmuir 2014, 30, 4531. doi: 10.1021/la500115t
(15) Dong, J. H.; Lin, Y. S.; Hu, M. Z. C.; Peascoe, R. A.; Payzant, E. A. Microporous Mesoporous Mat. 2000, 34, 241. doi: 10.1016/S1387-1811(99)00175-4
(16) Zhang, X. F.; Li, B. M.; Wang, J. Q.; Liu, C. H. Petrochem. Technol. 2002, No. 1, 10. [张雄福, 李邦民, 王金渠, 刘长厚.石油化工, 2002, No. 1, 10.]
(17) Wang, C.; Liu, X. F.; Cui, R. L.; Zhang, B. Q. Prog. Chem. 2008, 20, 1860. [王聪, 刘秀凤, 崔瑞利, 张宝泉. 化学进展, 2008, 20, 1860.]
(18) Hong, Z.; Sun, F.; Chen, D. D.; Zhang, C.; Gu, X. H.; Xu, N. P. Int. J. Hydrog. Energy 2013, 38, 8409. doi: 10.1016/j.ijhydene.2013.04.154
(19) Liu, X. F.; Zhang, B. Q.; Lin, Y. S. J. Chin. J. Inorg. Chem. 2008, 24, 1679. [刘秀凤, 张宝泉, 林跃生. 无机化学学报, 2008, 24, 1679.]
(20) Cheng, Y.; Yang, Y. C.; Li, J. S.; Sun, X. Y.; Wang, L. J. Chin. J. Inorg. Chem. 2005, 21, 796. [成岳, 杨宇川, 李健生, 孙秀云, 王连军. 无机化学学报, 2005, 21, 796.]
(21) Kanezashi, M.; O'Brien, J.; Lin, Y. S. J. Membr. Sci. 2006, 286, 213. doi: 10.1016/j.memsci.2006.09.038
(22) Zhang, B. Q.; Wang, C.; Lang, L.; Cui, R. L.; Liu, X. F. Adv. Funct. Mater. 2008, 18, 3434. doi: 10.1002/adfm.v18:21
(23) Jiang, H. Y.; Zhang, B. Q.; Lin, Y. S.; Li, Y. D. Chin. Sci. Bull. 2004, 49, 2133. [蒋海洋, 张宝泉, 林跃生, 李永丹. 科学通报, 2004, 49, 2133.] doi: 10.1007/BF03185778
(24) Gopalakrishnan, S.; Yamaguchi, T.; Nakao, S. J. Membr. Sci. 2006, 274, 102. doi: 10.1016/j.memsci.2005.08.005
(25) Heng, S.; Lau, P. P. S.; Yeung, K. L.; Djafer, M.; Schrotter, J. C. J. Membr. Sci. 2004, 243, 69. doi: 10.1016/j.memsci.2004.05.025
(26) Jirka, I.; Zikánová, A.; Novák, P.; Ko?i?ík, M.; Weber, J.; Pelouchová, H.; ?erňanský, M. Mater. Chem. Phys. 2005, 90, 116. doi: 10.1016/j.matchemphys.2004.10.019
(27) Jareman, F.; Andersson, C.; Hedlund, J. Microporous Mesoporous Mat. 2005, 79, 1. doi: 10.1016/j.micromeso.2004.10.032
(28) Li, Q. H.; Amweg, M. L.; Yee, C. K.; Navrotsky, A.; Parikh, A. N. Microporous Mesoporous Mat. 2005, 87, 45. doi: 10.1016/j.micromeso.2005.07.048
(29) Patarin, J. Angew. Chem. Int. Edit. 2004, 43, 3878.
(30) Xie, L. L.; Li, Q. H.; Yuan, H.; Wang, L. J.; Tian, Z.; Bing, N. C. Acta Chim. Sin. 2008, 66, 2113. [解丽丽, 李庆华, 袁昊, 王利军, 田震, 邴乃慈. 化学学报, 2008, 66, 2113.]
(31) Su, G. X.; Jin, J. S.; Cui, W. G.; Liu, H. T.; Zhang, Z. T. Chin. J. Process Eng. 2012, No. 1, 64. [苏广训, 金君素, 崔文广, 刘洪涛, 张泽廷. 过程工程学报, 2012, No. 1, 64.]
(32) Wang, Y. H.; Tan, J.; Liu, J.; Chen, Y.; Li, X. Y. Acta Chim. Sin. 2010, 68, 2471. [王业红, 谭涓, 刘靖, 陈颖, 李旭影. 化学学报, 2010, 68, 2471.]
(33) Liu, Y. Template Removal from Molecular SievesUsing Cold Plasma. Ph.D. Dissertation, Tianjin University, Tianjin, 2010. [刘媛. 冷等离子体脱除分子筛模板剂研究[D]. 天津: 天津大学, 2010.]
(34) Serrano, D. P.; García, R. A.; Linares, M.; Gil, B. Catal. Today 2012, 179, 91. doi: 10.1016/j.cattod.2011.06.029
(35) Pachtová, O.; Kocirik, M.; Zikánová, A.; Bernauer, B.; Miachon, S.; Dalmon, J. A. Microporous Mesoporous Mat. 2002, 55, 285. doi: 10.1016/S1387-1811(02)00430-4
(36) Mateo, E.; Paniagua, A.; Güell, C.; Coronas, J.; Santamaría, J. Mater. Res. Bull. 2009, 44, 1280. doi: 10.1016/j.materresbull.2009.01.003
(37) Gao, X. T.; Yeh, C. Y.; Angevine, P. Microporous Mesoporous Mat. 2004, 70, 27. doi: 10.1016/j.micromeso.2004.02.014
(38) Liu, X. G.; Xu, L.; Zhang, B. Q.; Liu, X. F. Microporous Mesoporous Mat. 2014, 193, 127. doi: 10.1016/j.micromeso.2013.12.034
(39) Liu, X. B.; Liu, Z. M.; Chang, F. X.; Qu, L. H.; Sang, S. Y.; Zhang, Y. Y. New Carbon Mater. 2006, 21, 237. [刘献斌, 刘中民, 常福祥, 曲丽红, 桑石云, 张阳阳. 新型炭材料, 2006, 21, 237.]
(40) Karwacki, L.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2011, 13, 3681. doi: 10.1039/C0CP02220A
(41) Jirka, I.; Sazama, P.; Zikánová, A.; Hrabánek, P.; Kocirik, M. Microporous Mesoporous Mat. 2011, 137, 8. doi: 10.1016/j.micromeso.2010.08.015
(42) Ivanov, D. P.; Sobolev, V. I.; Panov, G. I. Appl. Catal. A 2003, 241, 113. doi: 10.1016/S0926-860X(02)00462-3
(43) Guisnet, M.; Costa, L.; Ribeiro, F. R. J. Mol. Catal. A: Chem. 2009, 305, 69. doi: 10.1016/j.molcata.2008.11.012
(44) He, J.; Yang, X. B.; Evans, D. G.; Duan, X. Mater. Chem. Phys. 2003, 77, 270. doi: 10.1016/S0254-0584(01)00557-0
(45) Kuhn, J.; Motegh, M.; Gross, J.; Kapteijn, F. Microporous Mesoporous Mat. 2009, 120, 35. doi: 10.1016/j.micromeso.2008.08.061

1. YUAN Ping, WANG Hao, XUE Yan-Feng, LI Yan-Chun, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo.Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions[J]. Acta Phys. -Chim. Sin., 2016,32(7): 1775-1784
2. HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao.Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2016,32(7): 1785-1794
3. ZHAO Shu-Heng, LANG Lin, JIANG Jun-Fei, YIN Xiu-Li, WU Chuang-Zhi.Synthesis and Low-Temperature Detemplation of High-Silica MFI Zeolite Membranes[J]. Acta Phys. -Chim. Sin., 2016,32(2): 519-526
4. ZHANG Lan-Lan, SONG Yu, LI Guo-Dong, ZHANG Shao-Long, SHANG Yun-Shan, GONG Yan-Jun.ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2015,31(11): 2139-2150
5. ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, MATong, SONG Yu, GONG Yan-Jun, DOU Tao.Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Phys. -Chim. Sin., 2014,30(3): 535-543
6. WANG Wu-Gang, ZHANG Shao-Long, ZHANG Lan-Lan, WANG Yan, LIU Xiao-Ling, GONG Yan-Jun, DOU Tao.Synthesis and Characterization of Nanosheet ZSM-5 Zeolites with Different SiO2/Al2O3 Molar Ratios[J]. Acta Phys. -Chim. Sin., 2013,29(09): 2035-2040
7. ZHANG Jin-Gui, QIAN Wei-Zhong, TANG Xiao-Ping, SHEN Kui, WANG Tong, HUANG Xiao-Fan, WEI Fei.Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1281-1288
8. YUE Ming-Bo, YANG Na, WANG Yi-Meng.Synthesis of Shaped ZSM-5 Zeolites by Dry-Gel Conversion with Seed Gel as Directing Agent[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2115-2121
9. YAO Min, HU Si, WANG Jian, DOU Tao, WU Yong-Ping.Size Effect of HZSM-5 Zeolite on Catalytic Conversion of Methanol to Propylene[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2122-2128
10. LI Jun-Nan, PU Min, SU Yong, HE Jing, EVANS David G..Theoretical Study on the Synthesis of Ethyl Tertiary Butyl Ether over HZSM-5 Zeolite[J]. Acta Phys. -Chim. Sin., 2012,28(07): 1630-1636
11. WANG Song, MAO Dong-Sen, GUO Xiao-Ming, LU Guan-Zhong.Dimethyl Ether Synthesis from CO2 Hydrogenation over CuO-TiO2-ZrO2/HZSM-5 Catalysts[J]. Acta Phys. -Chim. Sin., 2011,27(11): 2651-2658
12. ZHANG Shao-Long, LI Bin, ZHANG Fei-Yue, MA Li, HAN Yan-Hua, FAN Min-Guang.Aromatization of Ethanol over Metal Modified P/HZSM-5 Zeolite[J]. Acta Phys. -Chim. Sin., 2011,27(06): 1501-1508
13. MAO Dong-Sen, GUO Qiang-Sheng, MENG Tao.Effect of Magnesium Oxide Modification on the Catalytic Performance of Nanoscale HZSM-5 Zeolite for the Conversion of Methanol to Propylene[J]. Acta Phys. -Chim. Sin., 2010,26(08): 2242-2248
14. MAO Dong-Sen, GUO Qiang-Sheng, MENG Tao, LU Guan-Zhong.Effect of Hydrothermal Treatment on the Acidity and Catalytic Performance of Nanosized HZSM-5 Zeolites for the Conversion of Methanol to Propene[J]. Acta Phys. -Chim. Sin., 2010,26(02): 338-344
15. Zhao Qi, Han Xiu-Wen, Liu Xiu-Mei, Liu Xian-Chun, Zhai Run-Sheng, Bao Xin-He, Lin Li-Wu, Guo Xin-Wen, Zhang Fa-Zhi, Wang Xiang-Sheng.Structure of Highly Siliceous ZSM-5 Zeolites and Ti-ZSM-5 Zeolites Obtained by Indirect Synthesis[J]. Acta Phys. -Chim. Sin., 1998,14(04): 320-326
16. Wang Bi-Xun,Fu Yi-Lu,Fang Shu-Nong.A Study of [Cu-O-Cu]2+ Species on Cu-ZSM-5 Zeolite by in situ Infrared Spectroscopy[J]. Acta Phys. -Chim. Sin., 1995,11(11): 974-978
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top