Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (5): 905-912    DOI: 10.3866/PKU.WHXB201503091
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries
ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He
Phosphorus Resources Comprehensive Utilization & Clean Processing Center of Ministry of Education, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
Download:   PDF(1280KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries was synthesized using a combination of modified carbonate co-precipitation and solid-state methods. The as-prepared material was analyzed using X- ray diffractometry (XRD), scanning electron microscopy (SEM), galvanostatic chargedischarge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results indicate that the material synthesized using this new method has a well-ordered layered structure, α-NaFeO2 [space group: R3m(166)], a spherical morphology, and an average particle size of 157 nm. Electrochemical measurements showed that the material has a good rate capability and long-term cycling performance. At a current density of 0.1C (1.0C=180mA·g-1) in the voltage range 2.7-4.3 V, the initial discharge capacity was 156.4 mAh·g-1 and the coulombic efficiency was 81.9%. At 0.5C, 5C, and 20C, the specific capacities of the material were 136.9, 111.3, and 81.3 mAh·g-1, respectively. After 100 cycles at 1C, the material retained 92.9% of its initial capacity; this is higher than those of materials prepared using conventional carbonate co-precipitation (87.0%).



Key wordsLithium-ion battery      Cathode material      Li[Ni1/3Co1/3Mn1/3]O2      Rate capacity      Modified carbonate co-precipitation     
Received: 13 November 2014      Published: 09 March 2015
MSC2000:  O646  
Fund:  

The project was supported by the Science and Technology Pillar Program of Sichuan Province, China (2014GZ0077), Sichuan University Funds for Young Scientists, China (2011SCU11081), and Research Fund for the Doctoral Program of Higher Education, the Ministry of Education, China (20120181120103).

Corresponding Authors: GUO Xiao-Dong     E-mail: xiaodong2009@scu.edu.cn
Cite this article:

ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2015, 31(5): 905-912.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201503091     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I5/905

(1) Yun, S. H.; Park, K. S.; Park, Y. J. J. Power Sources 2010, 195, 6108. doi: 10.1016/j.jpowsour.2009.11.022
(2) Li, Y.; Han, Q.; Ming, X.; Ren, M.; Li, L.; Ye, W.; Zhang, X.; Xu, H.; Li, L. Ceram. Int. 2014, 40, 14933. doi: 10.1016/j. ceramint.2014.06.090
(3) Hua, W. B.; Guo, X. D.; Zheng, Z.; Wang, Y. J.; Zhong, B. H.; Fang, B.; Wang, J. Z.; Chou, S. L.; Liu, H. J. Power Sources 2015, 257, 200.
(4) Jacob, C.; Lynch, T.; Chen, A.; Jian, J.; Wang, H. J. Power Sources 2013, 241, 410. doi: 10.1016/j.jpowsour.2013.04.140
(5) Zhang, S.; Deng, C.; Fu, B. L.; Yang, S. Y.; Ma, L. Powder Technol. 2010, 198, 373. doi: 10.1016/j.powtec.2009.12.002
(6) Feng, R.; Wang, L.W.; Lü, Z. Y.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sin. 2014, 72, 653. [冯瑞, 王立伟, 吕之阳, 吴强, 杨立军, 王喜章, 胡征. 化学学报, 2014, 72, 653.] doi: 10.6023/A14030227
(7) Liang, L.; Du, K.; Peng, Z.; Cao, Y.; Duan, J.; Jiang, J.; Hu, G. Electrochim. Acta 2014, 130, 82. doi: 10.1016/j.electacta.2014.02.100
(8) Lu, Y.; Zhao, Y. Particuology 2010, 8, 202. doi: 10.1016/j.partic.2010.03.006
(9) Noh, H. J.; Youn, S.; Yoon, C. S.; Sun, Y. K. J. Power Sources 2013, 233, 121. doi: 10.1016/j.jpowsour.2013.01.063
(10) Xu, Z.; Xiao, L.; Wang, F.; Wu, K.; Zhao, L.; Li, M. R.; Zhang, H. L.; Wu, Q.; Wang, J. J. Power Sources 2014, 248, 180. doi: 10.1016/j.jpowsour.2013.09.064
(11) K?z?lta?-Yavuz, N.; Herklotz, M.; Hashem, A. M.; Abuzeid, H. M.; Schwarz, B.; Ehrenberg, H.; Mauger, A.; Julien, C. M. Electrochim. Acta 2013, 113, 313. doi: 10.1016/j.electacta.2013.09.065
(12) Liu, Z. M.; Hu, G. R.; Fang, Z. S.; Zhang, X. L.; Liu, Y. X. Journal of Inorgnaic Material 2007, 22, 637. [刘智敏, 胡国荣, 方正升, 张新龙, 刘业翔. 无机材料学报, 2007, 22, 637.]
(13) Kim, K. J.; Jo, Y. N.; Lee, W. J.; Subburaj, T.; Prasanna, K.; Lee, C.W. J. Power Sources 2014, 268, 349 doi: 10.1016/j.jpowsour.2014.06.057
(14) Yin, K.; Fang, W. M.; Zhong, B. H.; Guo, X. D.; Tang, Y.; Nie, X. Electrochim. Acta 2012, 85, 99. doi: 10.1016/j.electacta.2012.06.064
(15) Zhang, S.; Deng, C.; Yang, S. Y.; Niu, H. J. Alloy. Compd. 2009, 484, 519. doi: 10.1016/j.jallcom.2009.04.149
(16) Zhu, Z.; Qi, L; Zhang, D.; Yu, H. Electrochim. Acta 2014, 115, 290. doi: 10.1016/j.electacta.2013.10.167
(17) Xiang, Y.; Yin, Z.; Li, X. J. Solid State Electr. 2014, 18, 2123. doi: 10.1007/s10008-014-2461-8
(18) Zhu, Z.; Qi, L.; Li, W.; Liao, X. Y. Acta Phys. -Chim. Sin. 2014, 30, 669. [朱智, 其鲁, 李卫, 廖细英. 物理化学学报, 2014, 30, 669.] doi: 10.3866/PKU.WHXB201402102
(19) Xiang, X.; Li, W. Electrochim. Acta 2014, 127, 259. doi: 10.1016/j.electacta.2014.02.037
(20) Li, J. F.; Xiong, S. L.; Li, X.W.; Qian, Y. T. Nanoscale 2013, 5, 2045. doi: 10.1039/c2nr33576j
(21) Kong, J. Z.; Zhou, F.; Wang, C. B.; Yang, X. Y.; Zhai, H. F.; Li, H.; Li, J. X.; Tang, Z.; Zhang, S. Q. J. Alloy. Compd. 2013, 554, 221. doi: 10.1016/j.jallcom.2012.11.090
(22) Hua, W. B.; Zhang, J. B.; Zheng, Z.; Liu, W. Y.; Peng, X. H.; Guo, X. D.; Zhong, B. H.; Wang, Y. J.; Wang, X. L. Dalton Trans. 2014, 43, 14824. doi: 10.1039/C4DT01611D
(23) Yao, Y.; Liu, H.; Li, G.; Peng, H.; Chen, K. Electrochim. Acta 2013, 113, 340. doi: 10.1016/j.electacta.2013.09.071
(24) Deng, C.; Zhang, S.; Ma, L.; Sun, Y. H.; Yang, S. Y.; Fu, B. L.; Liu, F. L.; Wu, Q. J. Alloy. Compd. 2011, 509, 1322. doi: 10.1016/j.jallcom.2010.10.027
(25) Wang, J. L.; Chui, D.W. Transactions of Materials and Heat Treatment 2012, 33, 15. [王金龙, 崔大伟. 材料热处理学报, 2012, 33, 15.]
(26) Huang, Z. D.; Liu, X. M.; Zhang, B.; Oh, S.W.; Ma, P. C.; Kim, J. K. Scripta Mater. 2011, 64, 122. doi: 10.1016/j.scriptamat. 2010.09.018
(27) Gao, P.; Yang, G.; Liu, H.; Wang, L.; Zhou, H. Solid State Ionics 2012, 207, 50. doi: 10.1016/j.ssi.2011.11.020
(28) Hua, W. B.; Guo, X. D.; Zheng, Z.; Zhang, J. B.; Zhong, B. H. Chemical Research and Application 2014, 64, 441. [滑纬博, 郭孝东, 郑卓, 张继斌, 钟本和. 化学研究与应用, 2014, 64, 441.]
(29) Huang, Z. D.; Liu, X. M.; Oh, S.W.; Zhang, B.; Ma, P. C.; Kim, J. K. J. Mater. Chem. 2011, 21, 10777. doi: 10.1039/c1jm00059d
(30) Riley, L. A.; Van Atta, S.; Cavanagh, A. S.; Yan, Y.; George, S. M.; Liu, P.; Dillon, A. C.; Lee, S. H. J. Power Sources 2011, 196, 3317. doi: 10.1016/j.jpowsour.2010.11.124

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[10] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[11] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[12] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[13] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[15] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.