Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (5): 877-884    DOI: 10.3866/PKU.WHXB201503161
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Theoretical Study of Adsorption of Chlorinated Phenol Pollutants on Co-Doped Boron Nitride Nanotubes
WANG Ruo-Xi1, ZHANG Dong-Ju2, LIU Cheng-Bu2
1 Criminal Scientific and Technological Department, Shandong Police College, Jinan 250014, P. R. China;
2 Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
Download:   PDF(1250KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Chlorinated phenols (CPs) are the main precursors for forming the persistent organic pollutants dioxins and have strong teratogenicity, carcinogenicity, and mutagenicity. To explore the novel material for the removal or detection of these pollutants, we used density functional theory calculations to investigate the adsorption behaviors and interaction mechanisms of 2-chlorophenol (2-CP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) on pristine and Co-doped (8,0) single-walled boron nitride nanotubes (denoted by BNNT and Co-BNNT, respectively). The results show that compared with BNNT, Co-BNNT introduces local states near the Fermi levels, and has a smaller band gap. BNNT physisorbs 2-CP, TCP, and PCP molecules, whereas Co-BNNT presents chemisorption towards them. Charge-transfer between Co-BNNT and molecules can be clearly observed and the electronic densities of states of the doped systems change significantly near the Fermi levels after adsorption of molecules. Doping with Co atom significantly increases the electronic transport capability of BNNT and enhances the adsorption reactivity of the tube to CPs. Co-BNNT is expected to be a potential material for removing or detecting CPs pollutants.



Key wordsBoron nitride nanotube      Co doping      Chlorinated phenol      Adsorption      Density functional theory     
Received: 17 October 2014      Published: 16 March 2015
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (21273131), Shandong Province Higher Educational Science and Technology Program, China (J11LB08), and Shandong Provincial Natural Science Foundation, China (ZR2013BM019).

Corresponding Authors: ZHANG Dong-Ju     E-mail: zhangdj@sdu.edu.cn
Cite this article:

WANG Ruo-Xi, ZHANG Dong-Ju, LIU Cheng-Bu. Theoretical Study of Adsorption of Chlorinated Phenol Pollutants on Co-Doped Boron Nitride Nanotubes. Acta Phys. -Chim. Sin., 2015, 31(5): 877-884.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201503161     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I5/877

(1) Kauffman, D. R.; Sorescu, D. C.; Schofield, D. P.; Allen, B. L.; Jordan, K. D.; Star, A. Nano Lett. 2010, 10, 958. doi: 10.1021/nl903888c
(2) Girao, E. C.; Fagan, S. B.; Zanella, I.; Filho, A. G. S. Journal of Hazardous Materials 2010, 184, 678. doi: 10.1016/j.jhazmat.2010.08.091
(3) Chen, G. C.; Shan, X. Q.; Pei, Z. G.; Wang, H. H.; Zheng, L. R.; Zhang, J.; Xie, Y. N. Journal of Hazardous Materials 2011, 188, 156. doi: 10.1016/j.jhazmat.2011.01.095
(4) Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081. doi: 10.1103/PhysRevB.49.5081
(5) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966. doi: 10.1126/science.269.5226.966
(6) Ma, R. Z.; Bando, Y.; Zhu, H.W.; Sato, T.; Xu, C.; Wu, D. H. J. Am. Chem. Soc. 2002, 124, 7672. doi: 10.1021/ja026030e
(7) Gao, Y, F.; Meng, Q. Y.; Zhang, L.; Liu, J. Q.; Jing, Y. H. Acta Phys. -Chim. Sin. 2012, 28, 1077. [高宇飞, 孟庆元, 张璐, 刘甲秋, 荆宇航. 物理化学学报, 2012, 28, 1077.] doi: 10.3866/PKU.WHXB201202273
(8) Zhao, J. X.; Ding, Y. H. J. Chem. Phys. 2009, 131, 014706. doi: 10.1063/1.3167409
(9) Choi, H.; Park, Y. C.; Kim, Y. H.; Lee, Y. S. J. Am. Chem. Soc. 2011, 133, 2084. doi: 10.1021/ja1101807
(10) Yu, Y. L.; Chen, H.; Liu, Y.; Li, L. H.; Chen, Y. Electrochemistry Communications 2013, 30, 29. doi: 10.1016/j.elecom.2013.01.026
(11) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001. doi: 10.1021/ja063653+
(12) Chen, R. Z.; Zhi, C. Y.; Yang, H.; Bando, Y.; Zhang, Z. Y.; Sugiur, N.; Golberg, D. J. Colloid Interface Sci. 2011, 359, 261. doi: 10.1016/j.jcis.2011.02.071
(13) Ponraj, S. B.; Chen, Z. Q.; Li, L. H.; Shankaranarayanan, J. S.; Rajmohan, G. D.; Plessis, J. D.; Sinclair, A. J.; Chen, Y.; Wang, X. G.; Kanwar, J. R.; Dai, X. J. Langmuir 2014, 30, 10712. doi: 10.1021/la502960h
(14) Zhao, J. X.; Ding, Y. H. Diamond and Related Mater. 2010, 19, 1073. doi: 10.1016/j.diamond.2010.03.011
(15) Anota, E. C.; Cocoletzi, G. H. J. Mol. Model 2013, 19, 2335. doi: 10.1007/s00894-013-1782-3
(16) Fan, Y.; Wang, Y. S.; Lou, J. S.; Xu, S. F.; Zhang, L. G.; An, L. N. J. Am. Ceram. Soc. 2006, 89, 740. doi: 10.1111/jace.2006.89.issue-2
(17) Wang, Q.; Liu, Y. J.; Zhao, J. X. J. Mol. Model. 2013, 19, 1143. doi: 10.1007/s00894-012-1662-2
(18) Beheshtian, J.; Peyghan, A. A.; Tabar, M. B.; Bagheri, Z. Appl. Surf. Sci. 2013, 266, 182. doi: 10.1016/j.apsusc.2012.11.128
(19) Wu, X. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. J. Chem. Phys. 2006, 124, 54706. doi: 10.1063/1.2162897
(20) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044704. doi: 10.1063/1.2210933
(21) Tang, C. C.; Bando, Y.; Huang, Y.; Yue, S. L.; Gu, C. Z.; Xu, F. F.; Golberg, D. J. Am. Chem. Soc. 2005, 127, 6552. doi: 10.1021/ja042388u
(22) Wang, R. X.; Zhang, D. J.; Liu, Y. J.; Liu, C. B. Nanotechnology 2009, 20, 505704. doi: 10.1088/0957-4484/20/50/505704
(23) Xie, Y.; Zhang, J. M. Comput. Theor. Chem. 2011, 976, 215. doi: 10.1016/j.comptc.2011.08.031
(24) Li, X. M.; Tian, W. Q.; Dong, Q.; Huang, X. R.; Sun, C. C.; Jiang, L. Comput. Theor. Chem. 2011, 964, 199. doi: 10.1016/j.comptc.2010.12.026
(25) Zhao, J. X.; Ding, Y. H. J. Phys. Chem. C 2008, 112, 5778. doi: 10.1021/jp7121196
(26) Tontapha, S.; Ruangpornvisuti, V.; Wanno, B. J Mol. Model. 2013, 19, 239. doi: 10.1007/s00894-012-1537-6
(27) Shao, P.; Kuang, X. Y.; Ding, L. P.; Yang, J.; Zhong, M. M. Appl. Surf. Sci. 2013, 285, 350. doi: 10.1016/j.apsusc.2013.08.061
(28) Morais, P. D.; Stoichev, T.; Basto, M.; Vasconcelos, M. Talanta 2012, 89, 1. doi: 10.1016/j.talanta.2011.12.044
(29) Becker, R.; Buge, H. G.; Win, T. Chemosphere 2002, 47, 1001. doi: 10.1016/S0045-6535(02)00004-8
(30) Chen, G. C.; Shan, X. Q.; Wang, Y. S.; Wen, B.; Pei, Z. G.; Xie, Y. N.; Liu, T.; Pignatello, J. J. Water Res. 2009, 43, 2409. doi: 10.1016/j.watres.2009.03.002
(31) Long, R. Q.; Yang, R. T. J. Am. Chem. Soc. 2001, 123, 2058. doi: 10.1021/ja003830l
(32) Zolgharnein, J.; Shariatmanesh, T.; Babaei, A. Sensors and Actuators B 2013, 186, 536. doi: 10.1016/j.snb.2013.06.040
(33) Zheng, Y. Q.; Yang, C. Z.; Zhang, J. D.; Pu, W. H.; Long, F.; Chen, X. F. Chinese Journal of Analysis Laboratory 2008, 27 (10), 1. [郑燕琼, 杨昌柱, 张敬东, 濮文虹, 龙峰, 陈晓峰. 分析试验室, 2008, 27 (10), 1.]
(34) Modi, A.; Koratkar, N.; Lass, E.; Wei, B.; Ajayan, P. M. Nature 2003, 424, 171. doi: 10.1038/nature01777
(35) Fu, M. Z.; Xing, H. Z.; Chen, X. F.; Zhao, R. S.; Zhi, C. Y.; Wu, C. L. Anal. Bioanal. Chem. 2014, 406, 5751. doi: 10.1007/s00216-014-8032-0
(36) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
(37) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
(38) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[9] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[10] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[11] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[12] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[13] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[14] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[15] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.