Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (5): 877-884    DOI: 10.3866/PKU.WHXB201503161
Theoretical Study of Adsorption of Chlorinated Phenol Pollutants on Co-Doped Boron Nitride Nanotubes
WANG Ruo-Xi1, ZHANG Dong-Ju2, LIU Cheng-Bu2
1 Criminal Scientific and Technological Department, Shandong Police College, Jinan 250014, P. R. China;
2 Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
Download:   PDF(1250KB) Export: BibTeX | EndNote (RIS)      


Chlorinated phenols (CPs) are the main precursors for forming the persistent organic pollutants dioxins and have strong teratogenicity, carcinogenicity, and mutagenicity. To explore the novel material for the removal or detection of these pollutants, we used density functional theory calculations to investigate the adsorption behaviors and interaction mechanisms of 2-chlorophenol (2-CP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) on pristine and Co-doped (8,0) single-walled boron nitride nanotubes (denoted by BNNT and Co-BNNT, respectively). The results show that compared with BNNT, Co-BNNT introduces local states near the Fermi levels, and has a smaller band gap. BNNT physisorbs 2-CP, TCP, and PCP molecules, whereas Co-BNNT presents chemisorption towards them. Charge-transfer between Co-BNNT and molecules can be clearly observed and the electronic densities of states of the doped systems change significantly near the Fermi levels after adsorption of molecules. Doping with Co atom significantly increases the electronic transport capability of BNNT and enhances the adsorption reactivity of the tube to CPs. Co-BNNT is expected to be a potential material for removing or detecting CPs pollutants.

Key wordsBoron nitride nanotube      Co doping      Chlorinated phenol      Adsorption      Density functional theory     
Received: 17 October 2014      Published: 16 March 2015
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21273131), Shandong Province Higher Educational Science and Technology Program, China (J11LB08), and Shandong Provincial Natural Science Foundation, China (ZR2013BM019).

Corresponding Authors: ZHANG Dong-Ju     E-mail:
Cite this article:

WANG Ruo-Xi, ZHANG Dong-Ju, LIU Cheng-Bu. Theoretical Study of Adsorption of Chlorinated Phenol Pollutants on Co-Doped Boron Nitride Nanotubes. Acta Phys. Chim. Sin., 2015, 31(5): 877-884.

URL:     OR

(1) Kauffman, D. R.; Sorescu, D. C.; Schofield, D. P.; Allen, B. L.; Jordan, K. D.; Star, A. Nano Lett. 2010, 10, 958. doi: 10.1021/nl903888c
(2) Girao, E. C.; Fagan, S. B.; Zanella, I.; Filho, A. G. S. Journal of Hazardous Materials 2010, 184, 678. doi: 10.1016/j.jhazmat.2010.08.091
(3) Chen, G. C.; Shan, X. Q.; Pei, Z. G.; Wang, H. H.; Zheng, L. R.; Zhang, J.; Xie, Y. N. Journal of Hazardous Materials 2011, 188, 156. doi: 10.1016/j.jhazmat.2011.01.095
(4) Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081. doi: 10.1103/PhysRevB.49.5081
(5) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966. doi: 10.1126/science.269.5226.966
(6) Ma, R. Z.; Bando, Y.; Zhu, H.W.; Sato, T.; Xu, C.; Wu, D. H. J. Am. Chem. Soc. 2002, 124, 7672. doi: 10.1021/ja026030e
(7) Gao, Y, F.; Meng, Q. Y.; Zhang, L.; Liu, J. Q.; Jing, Y. H. Acta Phys. -Chim. Sin. 2012, 28, 1077. [高宇飞, 孟庆元, 张璐, 刘甲秋, 荆宇航. 物理化学学报, 2012, 28, 1077.] doi: 10.3866/PKU.WHXB201202273
(8) Zhao, J. X.; Ding, Y. H. J. Chem. Phys. 2009, 131, 014706. doi: 10.1063/1.3167409
(9) Choi, H.; Park, Y. C.; Kim, Y. H.; Lee, Y. S. J. Am. Chem. Soc. 2011, 133, 2084. doi: 10.1021/ja1101807
(10) Yu, Y. L.; Chen, H.; Liu, Y.; Li, L. H.; Chen, Y. Electrochemistry Communications 2013, 30, 29. doi: 10.1016/j.elecom.2013.01.026
(11) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001. doi: 10.1021/ja063653+
(12) Chen, R. Z.; Zhi, C. Y.; Yang, H.; Bando, Y.; Zhang, Z. Y.; Sugiur, N.; Golberg, D. J. Colloid Interface Sci. 2011, 359, 261. doi: 10.1016/j.jcis.2011.02.071
(13) Ponraj, S. B.; Chen, Z. Q.; Li, L. H.; Shankaranarayanan, J. S.; Rajmohan, G. D.; Plessis, J. D.; Sinclair, A. J.; Chen, Y.; Wang, X. G.; Kanwar, J. R.; Dai, X. J. Langmuir 2014, 30, 10712. doi: 10.1021/la502960h
(14) Zhao, J. X.; Ding, Y. H. Diamond and Related Mater. 2010, 19, 1073. doi: 10.1016/j.diamond.2010.03.011
(15) Anota, E. C.; Cocoletzi, G. H. J. Mol. Model 2013, 19, 2335. doi: 10.1007/s00894-013-1782-3
(16) Fan, Y.; Wang, Y. S.; Lou, J. S.; Xu, S. F.; Zhang, L. G.; An, L. N. J. Am. Ceram. Soc. 2006, 89, 740. doi: 10.1111/jace.2006.89.issue-2
(17) Wang, Q.; Liu, Y. J.; Zhao, J. X. J. Mol. Model. 2013, 19, 1143. doi: 10.1007/s00894-012-1662-2
(18) Beheshtian, J.; Peyghan, A. A.; Tabar, M. B.; Bagheri, Z. Appl. Surf. Sci. 2013, 266, 182. doi: 10.1016/j.apsusc.2012.11.128
(19) Wu, X. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. J. Chem. Phys. 2006, 124, 54706. doi: 10.1063/1.2162897
(20) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044704. doi: 10.1063/1.2210933
(21) Tang, C. C.; Bando, Y.; Huang, Y.; Yue, S. L.; Gu, C. Z.; Xu, F. F.; Golberg, D. J. Am. Chem. Soc. 2005, 127, 6552. doi: 10.1021/ja042388u
(22) Wang, R. X.; Zhang, D. J.; Liu, Y. J.; Liu, C. B. Nanotechnology 2009, 20, 505704. doi: 10.1088/0957-4484/20/50/505704
(23) Xie, Y.; Zhang, J. M. Comput. Theor. Chem. 2011, 976, 215. doi: 10.1016/j.comptc.2011.08.031
(24) Li, X. M.; Tian, W. Q.; Dong, Q.; Huang, X. R.; Sun, C. C.; Jiang, L. Comput. Theor. Chem. 2011, 964, 199. doi: 10.1016/j.comptc.2010.12.026
(25) Zhao, J. X.; Ding, Y. H. J. Phys. Chem. C 2008, 112, 5778. doi: 10.1021/jp7121196
(26) Tontapha, S.; Ruangpornvisuti, V.; Wanno, B. J Mol. Model. 2013, 19, 239. doi: 10.1007/s00894-012-1537-6
(27) Shao, P.; Kuang, X. Y.; Ding, L. P.; Yang, J.; Zhong, M. M. Appl. Surf. Sci. 2013, 285, 350. doi: 10.1016/j.apsusc.2013.08.061
(28) Morais, P. D.; Stoichev, T.; Basto, M.; Vasconcelos, M. Talanta 2012, 89, 1. doi: 10.1016/j.talanta.2011.12.044
(29) Becker, R.; Buge, H. G.; Win, T. Chemosphere 2002, 47, 1001. doi: 10.1016/S0045-6535(02)00004-8
(30) Chen, G. C.; Shan, X. Q.; Wang, Y. S.; Wen, B.; Pei, Z. G.; Xie, Y. N.; Liu, T.; Pignatello, J. J. Water Res. 2009, 43, 2409. doi: 10.1016/j.watres.2009.03.002
(31) Long, R. Q.; Yang, R. T. J. Am. Chem. Soc. 2001, 123, 2058. doi: 10.1021/ja003830l
(32) Zolgharnein, J.; Shariatmanesh, T.; Babaei, A. Sensors and Actuators B 2013, 186, 536. doi: 10.1016/j.snb.2013.06.040
(33) Zheng, Y. Q.; Yang, C. Z.; Zhang, J. D.; Pu, W. H.; Long, F.; Chen, X. F. Chinese Journal of Analysis Laboratory 2008, 27 (10), 1. [郑燕琼, 杨昌柱, 张敬东, 濮文虹, 龙峰, 陈晓峰. 分析试验室, 2008, 27 (10), 1.]
(34) Modi, A.; Koratkar, N.; Lass, E.; Wei, B.; Ajayan, P. M. Nature 2003, 424, 171. doi: 10.1038/nature01777
(35) Fu, M. Z.; Xing, H. Z.; Chen, X. F.; Zhao, R. S.; Zhi, C. Y.; Wu, C. L. Anal. Bioanal. Chem. 2014, 406, 5751. doi: 10.1007/s00216-014-8032-0
(36) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
(37) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
(38) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[6] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[7] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[8] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[9] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[10] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[11] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[12] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[13] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[14] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[15] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.