Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (Suppl): 95-100    DOI: 10.3866/PKU.WHXB2014Ac13
Article     
Preparation of Carbon Aerogels and Adsorption of Uranium(VI) from Aqueous Solution
GU Ze-Xing1, TU Chang-Neng2, WANG Yun1, YANG Ji-Jun1, LIU Ning1, LIAO Jia-Li1, YANG Yuan-You1, TANG Jun1
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China;
2 Sichuan Xinshun Mining Co. Ltd., Chengdu 610041, P. R. China
Download:   PDF(683KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Carbon aerogels were prepared, using a freeze-drying method, from graphene oxide (GO) and carbon nanotube (CNT) hybrid hydrogels. The resulting aerogels were characterized using scanning electron microscopy and Fourier-transformed infrared spectroscopy. The adsorption of U(VI) on the GO-CNT aerogels was studied as a function of solid dosage, pH value, initial concentration, and contact time. The results showed that GO-CNT aerogels have high uranium(VI) removal capacities, and are promising sorbents.



Key wordsGraphene/carbon nanotube      Hydrogel      Aerogel      Adsorption      Uranium(VI)     
Published: 19 March 2015
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (91226108, 11274234).

Corresponding Authors: TANG Jun, TU Chang-Neng     E-mail: tangjun@scu.edu.cn;tuchangn@sohu.com
Cite this article:

GU Ze-Xing, TU Chang-Neng, WANG Yun, YANG Ji-Jun, LIU Ning, LIAO Jia-Li, YANG Yuan-You, TANG Jun. Preparation of Carbon Aerogels and Adsorption of Uranium(VI) from Aqueous Solution. Acta Phys. Chim. Sin., 2015, 31(Suppl): 95-100.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB2014Ac13     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/ISuppl/95

(1) Rao, T. P.; Metilda, P.; Gladis, J. M. Talanta 2006, 68, 1047. doi: 10.1016/j.talanta.2005.07.021
(2) Wu, Q. Y.; Lan, J. H.; Wang, C. Z.; Xiao, C. L.; Zhao, Y. L.; Wei, Y. Z.; Chai, Z. F.; Shi, W. Q. J. Phys. Chem. A 2014, 118, 2149. doi: 10.1021/jp500924a
(3) Song, M.; Wang, Q.; Meng, Y. J. Radioanal. Nucl. Chem. 2012, 293, 899. doi: 10.1007/s10967-012-1751-9
(4) Chen, J. H.; Lu, D. Q.; Chen, B.; Ouyang, P. K. J. Radioanal. Nucl. Chem. 2012, 295, 2233.
(5) Cheng, H.; Zeng, K.; Yu, J. J. Radioanal. Nucl. Chem. 2013, 298, 599. doi: 10.1007/s10967-012-2406-6
(6) Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, J.; Hu, J.; Shao, D.; Wang, X. Dalton Trans. 2012, 41, 6182. doi: 10.1039/c2dt00054g
(7) Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z.; Shi, W. Chem. Eng. J. 2012, 210, 539. doi: 10.1016/j.cej.2012.09.030
(8) Deb, A. K. S.; Ilaiyaraja, P.; Ponraju, D.; Venkatraman, B. J. Radioanal. Nucl. Chem. 2011, 291, 877.
(9) Romanchuk, A. Y.; Slesarev, A. S.; Kalmykov, S. N.; Kosynkin, D. V.; Tour, J. M. Phys. Chem. Chem. Phys. 2013, 15, 2321. doi: 10.1039/c2cp44593j
(10) Zong, P.; Wang, S.; Zhao, Y.; Wang, H.; Pan, H.; He, C. Chem. Eng. J. 2013, 220, 45. doi: 10.1016/j.cej.2013.01.038
(11) Zhao, Y.; Li, J.; Zhang, S.; Chen, H.; Shao, D. RSC Advances 2013, 3, 18952. doi: 10.1039/c3ra42236d
(12) Biener, J.; Stadermann, M.; Suss, M.; Worsley, M. A.; Biener, M. M.; Rose, K. A.; Baumann, T. F. Energy & Environmental Science 2011, 4, 656. doi: 10.1039/c0ee00627k
(13) Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutierrez, M. C.; del Monte, F. Chem. Soc. Rev. 2013, 42, 794. doi: 10.1039/C2CS35353A
(14) Han, S.; Wang, J.; Li, S.; Wu, D.; Feng, X. J. Mater. Chem. A 2014, 2, 6174.
(15) Wu, T.; Chen, M.; Zhang, L.; Xu, X.; Liu, Y.; Yan, J.; Wang, W.; Gao, J. J. Mater. Chem. A 2013, 1, 7612. doi: 10.1039/c3ta10989e
(16) Seredych, M.; Bandosz, T. J. Mater. Chem. Phys. 2009, 117, 99. doi: 10.1016/j.matchemphys.2009.05.004
(17) Mi, X.; Huang, G.; Xie, W.; Wang, W.; Liu, Y.; Gao, J. Carbon 2012, 50, 4856. doi: 10.1016/j.carbon.2012.06.013
(18) Dubey, S. P.; Dwivedi, A. D.; Kim, I. C.; Sillanpaa, M.; Kwon, Y. N.; Lee, C. Chem. Eng. J. 2014, 244, 160. doi: 10.1016/j.cej.2014.01.042
(19) Zhang, M.; Gao, B.; Cao, X.; Yang, L. RSC Advances 2013, 3, 21099. doi: 10.1039/c3ra44340j
(20) Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B. J. Mater. Chem. 2012, 22, 8767. doi: 10.1039/c2jm00055e
(21) Zhang, F.; Tang, J.; Wang, Z.; Qin, L. C. Chem. Phys. Lett. 2013, 590, 121. doi: 10.1016/j.cplett.2013.10.058
(22) Shao, D.; Jiang, Z.; Wang, X.; Li, J.; Meng, Y. The Journal of Physical Chemistry B 2009, 113, 860. doi: 10.1021/jp8091094
(23) Geng, J.; Ma, L.; Wang, H.; Liu, J.; Bai, C.; Song, Q.; Li, J.; Hou, M.; Li, S. J. Nanosci. Nanotechnol. 2012, 12, 7354. doi: 10.1166/jnn.2012.6518
(24) Zhang, Z. B.; Zhou, Z.W.; Cao, X. H.; Liu, Y. H.; Xiong, G. X.; Liang, P. J. Radioanal. Nucl. Chem. 2013, 299, 1479.
(25) Sun, Y.; Yang, S.; Sheng, G.; Guo, Z.; Wang, X. J. Environ. Radioact. 2012, 105, 407.
(26) Zhang, X.; Wang, J.; Li, R.; Liu, Q.; Li, L.; Yu, J.; Zhang, M.; Liu, L. Environ. Sci. Pollut. Res. Int. 2013, 20, 8202. doi: 10.1007/s11356-013-1788-5

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[9] WANG Xu-Chun, LI Jin-Ze, LI Guang-Yong, WANG Jin, ZHANG Xue-Tong, GUO Qiang. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2141-2152.
[10] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[11] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[12] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[13] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[14] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[15] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.