Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (5): 893-898    DOI: 10.3866/PKU.WHXB201503193
Norm Index-Based Quantitative Structure-Activity Relationship to Predict β-Cyclodextrin Complex Binding Constants
QIAN Hai-Cheng1, KANWAL Shahid1, JIA Qing-Zhu2, WANG Qiang1, JI Hui-Fen1, ZHU Zhi-Chen3, XIA Shu-Qian4, MA Pei-Sheng4
1 School of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China;
2 School of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China;
3 School of Science, Tianjin University of Urban Construction, Tianjin 300384, P. R. China;
4 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
Download:   PDF(2116KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Cyclodextrins (CDs) are widely used in the pharmaceutical industry, and the complex stability constant (logK) is an important evaluation target for CD inclusion complexes. In this work, the structures of the inclusion complexes of 233 compounds with β-cyclodextrin (β-CD) were investigated by the quantitative structure-activity relationship (QSAR) method based on a new set of norm indexes proposed by our group. Here, using several arithmetic approaches, a set of QSAR models based on these new norm indexes were developed to predict the logK values of the β-CD complexes. The results showed that all of the norm indexbased- QSAR models could predict logK well, and the best QSAR model was obtained using the least-squares support vector machine method with correlation coefficient (R), leave-one/ten-out validation correlation coefficient (QLOO and QLTO) values of 0.9587, 0.8775, and 0.8732, respectively. Comparison with other methods suggested that our method performed better for predicting the logK values of β-CD complexes in terms of both accuracy and stability, especially for the discrimination of isomer structures. The results of this and previous studies demonstrate that it might be possible to use the norm index-based model to predict not only the basic physical-chemical properties, but also the chemical reaction-related constants of organic compounds.

Key wordsβ-cyclodextrin      Norm index      Complex stability constant      Ab initio method      Structure-activity relationship     
Received: 09 February 2015      Published: 19 March 2015
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21306137, U1162104).

Corresponding Authors: WANG Qiang     E-mail:
Cite this article:

QIAN Hai-Cheng, KANWAL Shahid, JIA Qing-Zhu, WANG Qiang, JI Hui-Fen, ZHU Zhi-Chen, XIA Shu-Qian, MA Pei-Sheng. Norm Index-Based Quantitative Structure-Activity Relationship to Predict β-Cyclodextrin Complex Binding Constants. Acta Phys. Chim. Sin., 2015, 31(5): 893-898.

URL:     OR

(1) Loftsson, T.; Ducheêne, D. Int. J. Pharm. 2007, 329, 1. doi: 10.1016/j.ijpharm.2006.10.044
(2) Brewster, M. E.; Loftsson, T. Adv. Drug Deliver Rev. 2007, 59, 645. doi: 10.1016/j.addr.2007.05.012
(3) Freudenberg, K.; Jacobi, R. Ann. Chem. 1935, 518, 102.
(4) Larsen, K. L. J. Incl. Phenom. Macrocycl. Chem. 2002, 43, 1. doi: 10.1023/A:1020494503684
(5) Hsu, C. M.; Tsai, F. J.; Tsai, Y. Carbohyd. Polym. 2014, 114, 115. doi: 10.1016/j.carbpol.2014.07.042
(6) Vyas, A.; Saraf, S. J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 23. doi: 10.1007/s10847-008-9456-y
(7) Yang, S. G.; Chen, Q. D.; Shi, J. F.; Shen, X. H. Acta Phys. -Chim. Sin. 2010, 26 (4), 805. [杨士国, 陈庆德, 施建峰, 沈兴海. 物理化学学报, 2010, 26 (4), 805.] doi: 10.3866/PKU.WHXB20100407
(8) Avdeef, A.; Bendels, S.; Tsinman, O.; Tsinman, K.; Kansy, M. Pharm. Res. 2007, 24, 530. doi: 10.1007/s11095-006-9169-0
(9) Kim, C.; Park, J. Am. J. Drug Deliv. 2004, 2, 113. doi: 10.2165/00137696-200402020-00004
(10) Loftsson, T.; Jarho, P.; Masson, M.; Jarvinen, T. Expert Opin. Drug Deliv. 2005, 2, 335. doi: 10.1517/edd.2005.2.issue-2
(11) Szejtli, J.; Szente, L. Eur. J. Pharm. Biopharm. 2005, 61, 115. doi: 10.1016/j.ejpb.2005.05.006
(12) Lantz, A.; Rodriguez, M.; Wetterer, S.; Armstrong, D. Anal. Chim. Acta 2006, 557, 184. doi: 10.1016/j.aca.2005.10.005
(13) Loukas, Y. L. J. Pharm. Biomed. 1997, 275.
(14) Ogwu, S. O.; Alcala, M. J.; Bhardwaj, R.; Blanchard, J. J. Pharm. Biomed. Anal. 1999, 19, 391. doi: 10.1016/S0731-7085(98)00139-3
(15) Chen, J.; Ohnmacht, C. M.; Hage, D. S. J. Chromatogr. A 2004, 1033, 115. doi: 10.1016/j.chroma.2004.01.032
(16) Rundlett, K. L.; Armstrong, D.W. J. Chromatogr. A 1996, 721, 173. doi: 10.1016/0021-9673(95)00774-1
(17) Berglund, J.; Cedergren, L.; Andersson, S. B. Int. J. Pharm. 1997, 156, 195. doi: 10.1016/S0378-5173(97)00203-2
(18) Bellini, M. S.; Deyl, Z.; Manetto, G.; Kohlìcková, M. J. Chromatogr. A 2001, 924, 483. doi: 10.1016/S0021-9673(01)00775-0
(19) Junquera, E.; Aicart, E. J. Phys. Chem. B 1997, 101, 7163. doi: 10.1021/jp963977s
(20) Ono, N.; Hirayama, F.; Uekama, K. Eur. J. Pharm. Sci. 1999, 8, 133. doi: 10.1016/S0928-0987(99)00002-0
(21) Cirri, M.; Maestrelli, F.; Orlandini, S.; Furlanetto, S.; Pinzauti, S.; Mura, P. J. Pharm. Biomed. Anal. 2005, 37, 995. doi: 10.1016/j.jpba.2004.09.044
(22) Faucci, M. T.; Melani, F.; Mura, P. Chem. Phys. Lett. 2002, 358, 383. doi: 10.1016/S0009-2614(02)00410-4
(23) Melani, F.; Mura, P.; Adamo, M.; Maestrelli, F.; Gratteri, P.; Bonaccini, C. Chem. Phys. Lett. 2003, 370, 280. doi: 10.1016/S0009-2614(03)00126-X
(24) Loukas, Y. L.; Vraka, V.; Gregoriadis, G. Int. J. Pharm. 1996, 144, 225. doi: 10.1016/S0378-5173(96)04759-X
(25) Pérez-Garrido, A.; Helguera, A. M.; Guillén, A. A.; Cordeiro, M. N. D. S.; Escudero, A. G. Bioorg. Med. Chem. 2009, 17, 896. doi: 10.1016/j.bmc.2008.11.040
(26) Wang, Q.; Jia, Q. Z.; Yan, L. H.; Xia, S. Q.; Ma, P. S. Chemosphere 2014, 2, 30.
(27) Zhu, Z. C.; Wang, Q.; Jia, Q. Z.; Xia, S. Q.; Ma, P. S. Acta Phys. -Chim. Sin. 2014, 30 (6), 1086. [朱志臣, 王强, 贾青竹, 夏淑倩, 马沛生. 物理化学学报, 2014, 30 (6), 1086.] doi: 10.3866/PKU.WHXB201404161
(28) Zhu, Z. C.; Wang, Q.; Jia, Q. Z.; Tang, H. M.; Ma, P. S. Acta Phys. -Chim. Sin. 2013, 29 (1), 30. [朱志臣, 王强, 贾青竹, 汤红梅, 马沛生. 物理化学学报, 2013, 29 (1), 30.] doi: 10.3866/PKU.WHXB201210265
(29) Hyperchem. 7.0. Hypercube, Inc.: Gainesville, Florida.

[1] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1160-1170.
[2] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[3] LIU Hai-Chun, LU Shuai, RAN Ting, ZHANG Yan-Min, XU Jin-Xing, XIONG Xiao, XU An-Yang, LU Tao, CHEN Ya-Dong. Accurate Activity Predictions of B-Raf Type II Inhibitors via Molecular Docking and QSAR Methods[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2191-2206.
[4] ZHU Zhi-Chen, WANG Qiang, JIA Qing-Zhu, XIA Shu-Qian, MA Pei-Sheng. Structure-Property Relationship for the Pharmacological and Toxicological Activity of Heterocyclic Compounds[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1086-1090.
[5] SUN Sang-Dun, MI Si-Qi, YOU Jing, YU Ji-Liang, HU Song-Qing, LIU Xin-Yong. HQSAR Study and Molecular Design of Benzimidazole Derivatives as Corrosion Inhibitors[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1192-1200.
[6] WANG Zhi-Ming, HAN Na, YUAN Zhe-Ming, WU Zhao-Hua. Feature Selection for High-Dimensional Data Based on Ridge Regression and SVM and Its Application in Peptide QSAR Modeling[J]. Acta Phys. Chim. Sin., 2013, 29(03): 498-507.
[7] SHAO Zhi-Cheng, SONG Le-Xin, TENG Yue, DANG Zheng, XIA Juan. Increased Water Solubility of Molybdenum Trioxide Induced by β-Cyclodextrin[J]. Acta Phys. Chim. Sin., 2013, 29(03): 460-466.
[8] KANG Cong-Min, ZHAO Xu-Hao, WANG Xin-Yu, CHENG Jia-Gao, LÜ Ying-Tao. QSAR and Molecular Docking on Five-Membered Heterocyclopyrimidines as Thymidylate Synthase Inhibitors[J]. Acta Phys. Chim. Sin., 2013, 29(02): 431-438.
[9] CHEN Wen-Long, LIU Hai-Chao. Relationship between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol[J]. Acta Phys. Chim. Sin., 2012, 28(10): 2315-2326.
[10] ZHOU Liang-Chun, MENG Xiang-Guang, LI Jian-Mei, HU Wei, LIU Bo, DU Juan. Kinetics and Thermodynamics of Adsorption of Chlorophenols onto β-Cyclodextrin Modified Chitosan[J]. Acta Phys. Chim. Sin., 2012, 28(07): 1615-1622.
[11] ZHANG Qing-You, LONG Hai-Lin, FENG Xiu-Lin, SUO Jing-Jie, ZHANG Dan-Dan, LI Jing-Ya, XU Li-Zhuang, XU Lu. MOLMAP Descriptor and Its Application to Mutagenicity Prediction[J]. Acta Phys. Chim. Sin., 2012, 28(03): 541-546.
[12] ZHU Lin-Hong, SONG Le-Xin, CHEN Jie, YANG Jing, WANG Mang. Formation, Structure and Thermal Degradation of the Supramolecular Complex between β-Cyclodextrin and 18-Crown-6[J]. Acta Phys. Chim. Sin., 2011, 27(07): 1579-1586.
[13] TAO Wan-Jun, LI Chen-Wen, YIN Zong-Ning. Design of Self-Emulsifying System Based on QSAR[J]. Acta Phys. Chim. Sin., 2011, 27(01): 71-77.
[14] CHEN Yuan, YUAN Zhe-Ming, ZHOU Wei, XIONG Xing-Yao. A Novel QSAR Model Based on Geostatistics and Support Vector Regression[J]. Acta Phys. Chim. Sin., 2009, 25(08): 1587-1592.
[15] YANG Zhong-Zhi, LIU Yong-Jun. Calculation of the 9 Low-Energy Sructures of (H2O)11 Clusters Using the Accurate Ab Initio Method and the ABEEM/MM Model[J]. Acta Phys. Chim. Sin., 2009, 25(05): 928-934.