Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (5): 927-932    DOI: 10.3866/PKU.WHXB201503241
Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation
LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
Download:   PDF(820KB) Export: BibTeX | EndNote (RIS)      


A new Pt-based electrocatalyst with one-dimensional tubular Mn3O4-C as the catalyst support was synthesized by a dual-sacrificial template strategy. The morphology, structure, and composition of the Pt-Mn3O4- C composite were characterized by transmission electron microscopy, X-ray diffraction, and energy dispersive X-ray spectroscopy, respectively. The electrochemical performance of Pt-Mn3O4-C was investigated by cyclic voltammetry. The results show that Pt nanoparticles with an average size of 1.8 nm are uniformly dispersed on tubular Mn3O4-C, and Pt-Mn3O4-C exhibits superior electrocatalytic activity and higher stability for methanol oxidation than the commercial E-TEK Pt/C catalyst (20% (w, mass fraction) Pt). The excellent performance of Pt-Mn3O4-C is attributed to the uniform dispersion of Pt nanoparticles on Mn3O4-C and the synergetic catalytic effect of Pt and Mn3O4.

Key wordsPt nanoparticle      Tubular Mn3O4-C      Electrocatalyst      Methanol electrooxidation     
Received: 02 January 2015      Published: 24 March 2015
MSC2000:  O646  

The project was supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (IRT1238), National Natural Science Foundation of China (21275041, 21235002, J1210040), Foundation for Innovative Research Groups of National Natural Science Foundation of China (21221003), Hunan Provincial Natural Science Foundation, China (12JJ2010), and Specialized Research Fund for the Doctoral Program of Higher Education, China (20110161110009).

Corresponding Authors: ZHANG Xiao-Hua, CHEN Jin-Hua     E-mail:;
Cite this article:

LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua. Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation. Acta Phys. -Chim. Sin., 2015, 31(5): 927-932.

URL:     OR

(1) Jiang, S. P.; Liu, Z.; Tian, Z. Q. Adv. Mater. 2006, 18, 1068.
(2) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. J. Power Sources 2006, 155, 95. doi: 10.1016/j.jpowsour.2006.01.030
(3) Shen, Y.; Zhang, Z. H.; Long, R. R.; Xiao, K. J.; Xi, J. Y. ACS Appl. Mater. Inter. 2014, 6, 15162.
(4) Huang, H.; Chen, Q.; He, M.; Sun, X.; Wang, X. J. Power Sources 2013, 239, 189. doi: 10.1016/j.jpowsour.2013.03.133
(5) Cao, L.; Scheiba, F.; Roth, C.; Schweiger, F.; Cremers, C.; Stimming, U.; Fuess, H.; Chen, L.; Zhu, W.; Qiu, X. Angew. Chem. Int. Edit. 2006, 45, 5315.
(6) Gu, Y. J.; Wong, W. T. Langmuir 2006, 22, 11447. doi: 10.1021/la062053l
(7) Wang, C.; Kang, J. X.; Wang, L. L.; Chen, T.W.; Li, J.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2014, 30, 708. [王纯, 康建新, 王利利, 陈庭文, 李杰, 张东凤, 郭林. 物理化学学报, 2014, 30, 708.] doi: 10.3866/PKU.WHXB201401222
(8) Pietron, J. J.; Pomfret, C. N.; Chervin, C. N.; Long, J.W.; Rolison, D. R. J. Mater. Chem. 2012, 22, 5197. doi: 10.1039/c2jm15553b
(9) Zhou, Y.; Chu, Y. Q.; Liu, W. M.; Ma, C. A. Acta Phys. -Chim. Sin. 2013, 29, 287. [周阳, 褚有群, 刘委明, 马淳安. 物理化学学报, 2013, 29, 287.] doi: 10.3866/PKU.WHXB201211261
(10) Zhao, Z. G.; Yao, Z. J.; Zhang, J.; Zhu, R.; Jin, Y.; Li, Q.W. J. Mater. Chem. 2012, 22, 16514. doi: 10.1039/c2jm32769d
(11) Guo, D. J.; You, J. M. J. Power Sources 2012, 198, 127. doi: 10.1016/j.jpowsour.2011.10.017
(12) Yang, S.; Zhao, C.; Ge, C.; Dong, X.; Liu, X.; Liu, Y.; Fang, Y.; Wang, H.; Li, Z. J. Mater. Chem. 2012, 22, 7104. doi: 10.1039/c2jm00144f
(13) Carabineiro, S. A. C.; Bastos, S. S. T.; Órfão, J. J. M.; Pereira, M. F. R.; Delgado, J. J.; Figueiredo, J. L. Catal. Lett. 2010, 134, 217. doi: 10.1007/s10562-009-0251-1
(14) Maltha, A.; Favre, T. L. F.; Kist, H. F.; Zuur, A. P.; Ponec, V. J. Catal. 1994, 149, 364. doi: 10.1006/jcat.1994.1304
(15) Lee, J.W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. Chem. Mater. 2012, 24, 1158. doi: 10.1021/cm203697w
(16) Gorlin, Y.; Chung, C. J.; Nordlund, D.; Clemens, B. M.; Jaramillo, T. F. ACS Catal. 2012, 2, 2687. doi: 10.1021/cs3004352
(17) Wang, H.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. J. Am. Chem. Soc. 2010, 132, 13978. doi: 10.1021/ja105296a
(18) Choi, C. H.; Park, S. H.; Woo, S. I. Phys. Chem. Chem. Phys. 2012, 14, 6842. doi: 10.1039/c2cp24128e
(19) Zhao, Y.; Nie, S.; Wang, H.; Tian, J.; Ning, Z.; Li, X. J. Power Sources 2012, 218, 320. doi: 10.1016/j.jpowsour.2012.07.012
(20) Xiao, Y. P.; Jiang, W. J.; Wan, S.; Zhang, X.; Hu, J. S.; Wei, Z. D.; Wan, L. J. J. Mater. Chem. A 2013, 1, 7463. doi: 10.1039/c3ta10298j
(21) Yang, X. L.; Wang, X. Y.; Zhang, G. Q.; Zheng, J. P.; Wang, T. S.; Liu, X. Z.; Shu, C. Y.; Li, J.; Wang, C. R. Int. J. Hydrogen. Energ. 2012, 37, 11167. doi: 10.1016/j.ijhydene.2012.04.153
(22) Kim, K.W.; Kim, S. M.; Choi, S.; Kim, J.; Lee, I. S. ACS Nano 2012, 6, 5122. doi: 10.1021/nn300782m
(23) Zhu, L.; Zhang, S.; Cui, Y.; Song, H.; Chen, X. Electrochim. Acta 2013, 89, 18. doi: 10.1016/j.electacta.2012.10.157
(24) Xiao, C.; Chen, J.; Liu, B.; Chu, X.; Wu, L.; Yao, S. Phys. Chem. Chem. Phys. 2011, 13, 1568. doi: 10.1039/C0CP00980F
(25) Li, H.; Zhang, X.; Pang, H.; Huang, C.; Chen, J. J. Solid State Electrochem. 2010, 14, 2267.
(26) Lv, Q.; Yin, M.; Zhao, X.; Li, C.; Liu, C.; Xing, W. J. Power Sources 2012, 218, 93. doi: 10.1016/j.jpowsour.2012.06.051
(27) Zeng, J.; Francia, C.; Gerbaldi, C.; Baglio, V.; Specchia, S.; Aricò, A. S.; Spinelli, P. Electrochim. Acta 2013, 94, 80. doi: 10.1016/j.electacta.2013.01.139
(28) Pozio, A.; Francesco, M. D.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power. Sources 2002, 105, 13. doi: 10.1016/S0378-7753(01)00921-1
(29) Ye, K. H.; Zhou, S. A.; Zhu, X. C.; Xu, C.W.; Shen, P. K. Electrochim. Acta 2013, 90, 108. doi: 10.1016/j. electacta.2012.12.012
(30) Hao, Y. F.; Yang, Y. Y.; Hong, L. J.; Niu, L.; Gui, Y. H. ACS Appl. Mater. Interfaces 2014, 6, 21986. doi: 10.1016/10.1021/am5047747

[1] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[2] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2388-2403.
[3] Han XU,Ye-Xiang TONG,Gao-Ren LI. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2171-2184.
[4] Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1473-1481.
[5] Liu-Xuan LUO,Shui-Yun SHEN,Feng-Juan ZHU,Jun-Liang ZHANG. Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 337-342.
[6] CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 302-308.
[7] Hai-Li. GAO,Xiao-Long. LI,Wei. HE,Rui-Ting. GUO,Bo. CHAI. One-Step Synthesis of Reduced Graphene Oxide supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2117-2123.
[8] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1267-1273.
[9] ZHOU Yang, HU Xian-Chao, LI Li-Qing, CHEN Xi-Rong. Palladium Nanoparticles Supported on Hollow Mesoporous Tungsten Trioxide Microsphere as Electrocatalyst for Formic Acid Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 83-87.
[10] ZHANG Xiao-Hua, ZHONG Jin-Di, YU Ya-Ming, ZHANG Yun-Song, LIU Bo, CHEN Jin-Hua. Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1297-1304.
[11] CUI Ying, KUANG Yin-Jie, ZHANG Xiao-Hua, LIU Bo, CHEN Jin-Hua. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 989-995.
[12] LI Shang, WANG Jia-Tang, CHEN Rui-Xin, ZHAO Wei, QIAN Liu, PAN Mu. Catalytic Performance of Heat-Treated Fe-Melamine/C and Fe-g-C3N4/C Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 792-798.
[13] WANG Wan-Li, MA Zi-Feng. Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2879-2884.
[14] WU Xiao-Qin, ZONG Rui-Long, ZHU Yong-Fa. Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 437-444.
[15] WANG Xi-Zhao, FU Rong, ZHENG Jun-Sheng, Ma Jian-Xin. Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2011, 27(08): 1875-1880.