Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (6): 1077-1085    DOI: 10.3866/PKU.WHXB201504014
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters
ZHAO Jun-Feng, SUN Xiao-Li,LI Ji-Lai, HUANG Xu-Ri
Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
Download:   PDF(2980KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Density functional theory calculations were performed to study the mechanism and reactivity of methanol oxidation mediated by PtnRum (n+m=3, n≠0) clusters. The potential energy surfaces and pathways of the initial O―H and C―H bond activations were predicted. The results show that the activation of methanol proceeds preferentially along the C―H bond activation pathway. The calculated reactivity order was Pt2Ru>Pt3> PtRu2. Frontier molecular orbital analysis showed that the initial C/O―H bond activation is a proton transfer process. The solvent effect was also investigated. This study will enable a deeper understanding of C/O―H bond activation and provide new ideas for catalyst selection and optimizing conditions for methanol activation.



Key wordsDensity functional theory      Cluster      Methanol      Reactivity      Proton transfer     
Received: 06 February 2015      Published: 01 April 2015
MSC2000:  O641  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2012CB932800) and National Natural Science Foundation of China (21103064, 21473070).

Corresponding Authors: LI Ji-Lai, HUANG Xu-Ri     E-mail: jilai@jlu.edu.cn
Cite this article:

ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters. Acta Phys. Chim. Sin., 2015, 31(6): 1077-1085.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201504014     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I6/1077

(1) de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2003, 125, 7413. doi: 10.1021/ja034142f
(2) Schwarz, H.; Schröder, D. Pure Appl. Chem. 2000, 72, 2319.
(3) Schwarz, H. Angew. Chem. Int. Edit. 2011, 50, 10096. doi: 10.1002/anie.201006424
(4) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Curr. Inorg. Chem. 2012, 2, 64. doi: 10.2174/1877944111202010064
(5) Li, J. L.; Zhang, X.; Huang, X. R. Phys. Chem. Chem. Phys. 2012, 14, 246. doi: 10.1039/C1CP22187F
(6) Li, J. L.; Geng, C. Y.; Huang, X. R.; Zhang, X.; Sun, C. C. Organometallics 2007, 26, 2203. doi: 10.1021/om070039d
(7) Li, J. L.; Wu, X. N.; Schlangen, M.; Zhou, S. D.; González- Navarrete, P.; Tang, S. Y.; Schwarz, H. Angew. Chem. Int. Edit. 2015, doi: 10.1002/anie.201412441.
(8) Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Curr. Opin. Chem. Biol. 2002, 6, 556. doi: 10.1016/S1367-5931(02)00363-0
(9) Ye, S.; Neese, F. Curr. Opin. Chem. Biol. 2009, 13, 89. doi: 10.1016/j.cbpa.2009.02.007
(10) Ye, S.; Neese, F. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1228. doi: 10.1073/pnas.1008411108
(11) Neese, F. J. Inorg. Biochem. 2006, 100, 716. doi: 10.1016/j.jinorgbio.2006.01.020
(12) Geng, C. Y.; Ye, S.; Neese, F. Angew. Chem. Int. Edit. 2010, 49, 5717. doi: 10.1002/anie.v49:33
(13) Geng, C. Y.; Li, J. L.; Huang, X. R.; Liu, H. L.; Li, Z.; Sun, C. C. J. Comput. Chem. 2008, 29, 686.
(14) Decker, A.; Rohde, J. U.; Klinker, E. J.; Wong, S. D.; Que, L.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 15983. doi: 10.1021/ja074900s
(15) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Chem. Rev. 2005, 105, 2279. doi: 10.1021/cr030722j
(16) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2009, 110, 949.
(17) Schöneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2004, 126, 4017. doi: 10.1021/ja039847w
(18) Kwon, Y. H.; Kim, S. C.; Lee, S. Y. Macromolecules 2009, 42, 5244. doi: 10.1021/ma900781c
(19) Martínez-Huerta, M. V.; Rodríguez, J. L.; Tsiouvaras, N.; Peña, M. A.; Fierro, J. L. G.; Pastor, E. Chem. Mater. 2008, 20, 4249. doi: 10.1021/cm703047p
(20) Michel, C.; Goltl, F.; Sautet, P. Phys. Chem. Chem. Phys. 2012, 14, 15286. doi: 10.1039/c2cp43014b
(21) Ranea, V. A.; Michaelides, A.; Ramírez, R.; de Andres, P. L.; Vergés, J. A.; King, D. A. Phys. Rev. Lett. 2004, 92, 136104. doi: 10.1103/PhysRevLett.92.136104
(22) Usami, Y.; Kagawa, K.; Kawazoe, M.; Yasuyuki, M.; Sakurai, H.; Haruta, M. Appl. Catal. A-Gen. 1998, 171, 123. doi: 10.1016/S0926-860X(98)00082-9
(23) Hamnett, A. Catal. Today 1997, 38, 445. doi: 10.1016/S0920-5861(97)00054-0
(24) Childers, C. L.; Huang, H. L.; Korzeniewski, C. Langmuir 1999, 15, 786. doi: 10.1021/la980798o
(25) Xu, C.; Wang, R.; Chen, M.; Zhang, Y.; Ding, Y. Phys. Chem. Chem. Phys. 2010, 12, 239. doi: 10.1039/B917788D
(26) Hernández-Fernández, P.; Montiel, M.; Ocón, P.; Fierro, J. L. G.; Wang, H.; Abruña, H. D.; Rojas, S. J. Power Sources 2010, 195, 7959. doi: 10.1016/j.jpowsour.2010.06.009
(27) Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743.
(28) Li, Y.; Tang, L.; Li, J. Electrochem. Commun. 2009, 11, 846. doi: 10.1016/j.elecom.2009.02.009
(29) Zhao, Y.; Zhan, L.; Tian, J.; Nie, S.; Ning, Z. Electrochim. Acta 2011, 56, 1967. doi: 10.1016/j.electacta.2010.12.005
(30) Santhosh, P.; Gopalan, A.; Lee, K. P. J. Catal. 2006, 238, 177. doi: 10.1016/j.jcat.2005.12.014
(31) McIntyre, D. R.; Burstein, G. T.; Vossen, A. J. Power Sources 2002, 107, 67. doi: 10.1016/S0378-7753(01)00987-9
(32) Raghuveer, V.; Viswanathan, B. J. Power Sources 2005, 144, 1. doi: 10.1016/j.jpowsour.2004.11.033
(33) Hays, C. C.; Manoharan, R.; Goodenough, J. B. J. Power Sources 1993, 45, 291. doi: 10.1016/0378-7753(93)80018-K
(34) Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.; Wang, Y. Acta Phys. -Chim. Sin. 2011, 27, 2379. [党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔. 物理化学学报, 2011, 27, 2379.] doi: 10.3866/PKU.WHXB20110922
(35) Ali, L. I.; Ali, A. G. A.; Aboul-Fotouh, S. M.; Aboul-Gheit, A. K. Appl. Catal. A-Gen. 1999, 177, 99. doi: 10.1016/S0926-860X (98)00248-8
(36) Lafuente, E.; Muñoz, E.; Benito, A. M.; Maser, W. K.; Martínez, M. T.; Alcaide, F.; Ganborena, L.; Cendoya, I.; Miguel, O.; Rodríguez, J.; Urriolabeitia, E. P.; Navarro, R. J. Mater. Res. 2006, 21, 2841. doi: 10.1557/jmr.2006.0355
(37) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735. doi: 10.1126/science.280.5370.1735
(38) Oleg, A. P. J. Solid State Electr. 2008, 12, 609. doi: 10.1007/s10008-007-0500-4
(39) Sun, Y. P.; Xing, L.; Scott, K. J. Power Sources 2010, 195, 1. doi: 10.1016/j.jpowsour.2009.07.028
(40) Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Langmuir 2006, 22, 2892. doi: 10.1021/la0529557
(41) Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L.; Njoki, P.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Catal. Today 2005, 99, 291. doi: 10.1016/j.cattod.2004.10.013
(42) Morante-Catacora, T. Y.; Ishikawa, Y.; Cabrera, C. R. J. Electroanal. Chem. 2008, 621, 103. doi: 10.1016/j.jelechem.2008.04.029
(43) Neto, A. O.; Dias, R. R.; Tusi, M. M.; Linardi, M.; Spinacé, E. V. J. Power Sources 2007, 166, 87. doi: 10.1016/j.jpowsour.2006.12.088
(44) Yi, Q.; Zhang, J.; Chen, A.; Liu, X.; Xu, G.; Zhou, Z. J. Appl. Electrochem. 2008, 38, 695. doi: 10.1007/s10800-008-9490-x
(45) Liu, Y. C.; Qiu, X. P.; Huang, Y. Q.; Zhu, W. T. J. Power Sources 2002, 111, 160. doi: 10.1016/S0378-7753(02)00298-7
(46) Thomas, J. M. Angew. Chem. Int. Edit. 1994, 33, 913.
(47) Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121. doi: 10.1021/cr00006a002
(48) Kulesza, P. J.; Matczak, M.; Wolkiewicz, A.; Grzybowska, B.; Galkowski, M.; Malik, M. A.; Wieckowski, A. Electrochim. Acta 1999, 44, 2131. doi: 10.1016/S0013-4686(98)00321-1
(49) Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1993, 97, 12020. doi: 10.1021/j100148a030
(50) Lu, Q.; Li, J. P. Guangdong Chemical Industry 2006, 33, 8. [陆勤, 李俊鹏. 广东化工, 2006, 33, 8.],
(51) Zhong, W.; Liu, Y.; Zhang, D. J. Mol. Model. 2012, 18, 3051. doi: 10.1007/s00894-011-1318-7
(52) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
(53) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/ 1.464913
(54) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
(55) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
(56) Fukui, K. J. Phys. Chem. 1970, 74, 4161. doi: 10.1021/j100717a029
(57) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73. doi: 10.1002/wcms.81
(58) Neese, F. J. Am. Chem. Soc 2006, 128, 10213. doi: 10.1021/ja061798a
(59) Sun, X. L.; Huang, X. R.; Li, J. L.; Huo, R. P.; Sun, C. C. J. Phys. Chem. A 2012, 116, 1475. doi: 10.1021/jp2120302
(60) Sun, X. L.; Geng, C. Y.; Huo, R. P.; Ryde, U.; Bu, Y. X.; Li, J. L. J. Phys. Chem. B 2014, 118, 1493.
(61) Sun, X. H.; Sun, X. L.; Geng, C. Y.; Zhao, H. T.; Li, J. L. J. Phys. Chem. A 2014, 118, 7146. doi: 10.1021/jp505662x
(62) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Mol. Model. 2013, 19, 1009. doi: 10.1007/s00894-012-1616-8
(63) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Acta Chim. Sin. 2012, 70, 1245. [孙小丽, 李吉来, 黄旭日, 孙家钟. 化学学报, 2012, 70, 1245.] doi: 10.6023/A1201134
(64) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Phys. Chem. A 2011, 115, 3576. doi: 10.1021/jp200231n
(65) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.
(66) Zhang, X.; Schwarz, H. Theor. Chem. Acc. 2011, 129, 389. doi: 10.1007/s00214-010-0861-0
(67) Li, J. L.; Mata, R. A.; Ryde, U. J. Chem. Theory Comput. 2013, 9, 1799. doi: 10.1021/ct301094r
(68) Zhang, X.; Schwarz, H. Chem. -Eur. J. 2010, 16, 5882. doi: 10.1002/chem.201000567
(69) Li, J. L.; Ryde, U. Inorg. Chem. 2014, 53, 11913. doi: 10.1021/ic5010837
(70) Li, J. L.; González-Navarrete, P.; Schlangen, M.; Schwarz, H. Chem. -Eur. J. 2015, 21, 7780. doi: 10.1002/chem.201500715
(71) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2002, 124, 7193. doi: 10.1021/ja017818k
(72) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910. doi: 10.1021/ja037700z

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[6] DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. Chim. Sin., 2018, 34(3): 314-322.
[7] GHARA Manas, CHATTARAJ Pratim K. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Phys. Chim. Sin., 2018, 34(2): 201-207.
[8] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[9] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[10] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[11] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[12] ZOU Jing-Xiang, SHEN Jun, XU En-Hua, FANG Tao, LI Shu-Hua. Multireference Perturbation Theory and Multireference Coupled Cluster Theory Based on the “Block-Correlation” Framework[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1277-1287.
[13] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[14] ZHOU Yang, LI Gao. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1297-1309.
[15] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.