Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (6): 1145-1152    DOI: 10.3866/PKU.WHXB201504015
Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2
HUANG Yan1,2, FU Min1, HE Tao2
1 Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067, P. R. China;
2 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
Download:   PDF(1391KB) Export: BibTeX | EndNote (RIS)      


A visible-light-active graphitic-like carbon nitride (g-C3N4)/BiVO4 nanocomposite photocatalyst was synthesized using a facile ultrasonic dispersion method. The nanocomposite was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence (PL) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and photocurrent response measurements. The photocatalytic activity in the photoreduction of CO2 under visible-light irradiation (λ>420 nm) was determined. The g-C3N4/BiVO4 catalyst containing 40% (w) g-C3N4 showed the highest photocatalytic activity; it was almost twice that of g-C3N4 nanosheets and four times that of BiVO4. The enhanced photocatalytic activity is attributed to the formation of heterostructures at the g-C3N4/BiVO4 interface and appropriate alignment of the energy levels between them, which can facilitate separation of photogenerated electrons and holes.

Key wordsPhotocatalysis      CO2 conversion      Methane      Carbon nitride      Bismuth vanadate     
Received: 09 February 2015      Published: 01 April 2015
MSC2000:  O643  

The project was supported by the Ministry of Science and Technology of China (2015DFG62610).

Corresponding Authors: FU Min, HE Tao     E-mail:;
Cite this article:

HUANG Yan, FU Min, HE Tao. Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2. Acta Phys. -Chim. Sin., 2015, 31(6): 1145-1152.

URL:     OR

(1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. doi: 10.1038/277637a0
(2) Yaghoubi, H.; Li, Z.; Chen, Y.; Ngo, H. T.; Bhethanabotla, V. R.; Joseph, B.; Ma, S. Q.; Schlaf, R.; Takshi, A. ACS Catal. 2015, 5, 327. doi: 10.1021/cs501539q
(3) Fujiwara, H.; Hosokawa, H.; Murakoshi, K.; Wada, Y.; Yanagida, S. Langmuir 1998, 14, 5154. doi: 10.1021/la9801561
(4) Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. ACS Appl. Mater. Inter. 2011, 3, 3594. doi: 10.1021/am2008147
(5) Wang, Z. Y.; Chou, H. C.; Wu, J. C.S.; Tsai, D. P.; Mul, G. Appl. Catal. A 2010, 380, 172. doi: 10.1016/j.apcata.2010.03.059
(6) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G. Angew. Chem. Int. Edit. 2010, 122, 6544. doi: 10.1002/ange.201003270
(7) Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. ACS Appl. Mater. Inter. 2011, 3, 2594. doi: 10.1021/am200425y
(8) Zhao, Z. H.; Fan, J. M.; Wang, J. Y.; Li, R. F. Catal. Commun. 2012, 21, 32. doi: 10.1016/j.catcom.2012.01.022
(9) Truong, Q. D.; Liu, J. Y.; Chung, C. C.; Ling, Y. C. Catal. Commun. 2012, 19, 85. doi: 10.1016/j.catcom.2011.12.025
(10) Hensel, J.; Wang, G. M.; Li, Y.; Zhang, J. Z. Nano Lett. 2010, 10, 478. doi: 10.1021/nl903217w
(11) Xiang, Q. J.; Yu, J. G.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja302846n
(12) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
(13) Maeda, K.; Kuriki, R.; Zhang, M.W.; Wang, X. C.; Ishitani, O. J. Mater. Chem. A 2014, 2, 15146. doi: 10.1039/C4TA03128H
(14) Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Chem. Commun. 2014, 50, 6094. doi: 10.1039/c4cc00745j
(15) Zhang, W. D.; Sun, Y. J.; Dong, F.; Zhang, W.; Duan, S.; Zhang, Q. Dalton. Trans. 2014, 43, 12026. doi: 10.1039/C4DT00513A
(16) Hu, M.; Reboul, J.; Furukawa, S.; Radhakrishnan, L.; Zhang, Y. J.; Srinivasu, P.; Iwai, H.; Wang, H. J.; Nemoto, Y.; Suzuki, N.; Kitagawa, S.; Yamauchi, Y. Chem. Commun. 2011, 47, 8124. doi: 10.1039/c1cc12378e
(17) Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2009, 25, 10397. doi: 10.1021/la900923z
(18) Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.v22.22
(19) Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Adv. Mater. 2014, 26, 4438. doi: 10.1002/adma.v26.26
(20) Lan, B. Y.; Shi, H. F. Acta Phys. -Chim. Sin. 2014, 30, 2177. [蓝奔月, 史海峰. 物理化学学报, 2014, 30, 2177.] doi: 10.3866/PKU.WHXB201409303
(21) Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. ACS Catal. 2014, 4, 3637. doi: 10.1021/cs500848f
(22) Ye, Y. M.; Zhang, L. H.; Teng, B. T.; Fan, M. H. Environ. Sci. Tech. 2015, 49, 649. doi: 10.1021/es5046309
(23) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53, 229. doi: 10.1023/A:1019034728816
(24) Sun, Y. F.; Wu, C. Z.; Long, R.; Cui, Y.; Zhang, S. D.; Xie, Y. Chem. Commun. 2009, 4542.
(25) Ke, D. N.; Peng, T. Y.; Ma, L.; Cai, P.; Dai, K. Inorg. Chem. 2009, 48, 4685. doi: 10.1021/ic900064m
(26) Zhang, L.; Chen, D. R.; Jiao, X. L. J. Phys. Chem. B 2006, 110, 2668. doi: 10.1021/jp056367d
(27) Wang, Z. Q.; Luo, W. J.; Yan, S. C.; Feng, J. Y.; Zhao, Z. Y.; Zhu, Y. S.; Li, Z. S.; Zou, Z. G. CrystEngComm 2011, 13, 2500. doi: 10.1039/c0ce00799d
(28) Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Zan, L. Catal. Commun. 2012, 28, 38. doi: 10.1016/j.catcom.2012.08.008
(29) Zhang, A. P.; Zhang, J. Z. J. Alloy. Compd. 2010, 491, 631. doi: 10.1016/j.jallcom.2009.11.027
(30) Liu, K. J.; Chang, Z. D.; Li, W. J.; Che, P.; Zhou, H. L. Sci. China Chem. 2012, 55, 1770. doi: 10.1007/s11426-012-4525-x
(31) Cao, F. P.; Ding, C. H.; Liu, K. C.; Kang, B. Y.; Liu, W. M. Cryst. Res. Technol. 2014, 49, 933. doi: 10.1002/crat.v49.12
(32) Ehsan, M. F.; Ashiq, M. N.; Bi, F.; Bi, Y. Q.; Palanisamy, S.; He, T. RSC Adv. 2014, 4, 48411. doi: 10.1039/C4RA06828A
(33) Pérez, U. M. G.; Guzmán, S. S.; Cruz, A. M.; Méndez, U. O. J. Mol. Catal. A 2011, 335, 169. doi: 10.1016/j.molcata.2010.11.030
(34) Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. J. Mater. Chem. 2012, 22, 15006. doi: 10.1039/c2jm32053c
(35) Yuan, Y. P.; Yin, L. S.; Cao, S.W.; Gu, L. N.; Xu, G. S.; Du, P. W.; Chai, H.; Liao, Y. S.; Xue, C. Green Chem. 2014, 16, 4663. doi: 10.1039/C4GC01517G
(36) Li, M. L.; Zhang, L. X.; Fan, X. Q.; Zhou, Y. J.; Wu, M. Y.; Shi, J. L. J. Mater. Chem. 2015, 3, 5189. doi: 10.1039/c4ta06295g
(37) Xiong, Z. G.; Zhang, L. L.; Ma, J. Z.; Zhao, X. S. Chem. Commun. 2010, 46, 6099. doi: 10.1039/c0cc01259a
(38) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005, 17, 2588. doi: 10.1021/cm049100k
(39) Xu, Q. C.; Wellia, D. V.; Ng, Y. H.; Amal, R.; Tan, T. T. Y. J. Phys. Chem. C 2011, 115, 7419. doi: 10.1021/jp1090137
(40) Daude, N.; Gout, C.; Jouanin, C. Phys. Rev. B 1977, 15, 3229. doi: 10.1103/PhysRevB.15.3229

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[3] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[4] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[5] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[6] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[7] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 611-619.
[8] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[9] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[10] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[11] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[12] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[13] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[14] Dong-Mei LIANG,Xia LENG,Yu-Chen MA. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1967-1976.
[15] Yue WANG,Quan JIANG,Jie-Kun SHANG,Jie XU,Yong-Xin LI. Advances in the Synthesis of Mesoporous Carbon Nitride Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1913-1928.