Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (6): 1105-1112    DOI: 10.3866/PKU.WHXB201504081
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials
CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
Download:   PDF(1516KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

We synthesized Ni(OH)2 nanowires/three-dimensional graphene composites using a hydrothermal method, and compared their properties with those of three-dimensional graphene, Ni(OH)2 nanowires, reduced graphene oxide, and Ni(OH)2 nanowires/reduced graphene oxide. The samples were characterized using Xray diffraction, scanning electron microscopy, thermogravimetric analysis, and N2 physisorption measurements. The electrochemical performances were investigated using cyclic voltammetry and galvanostatic chargedischarge methods. The results showed that Ni(OH)2 nanowires of width 20-30 nm were closely combined with graphene and crosslinked to one another to form a three-dimensional structure with a high specific surface area (136 m2·g-1) and mesoporosity (pore diameter 20-50 nm). The mass fraction of Ni(OH)2 nanowires in the Ni(OH)2 nanowires/three-dimensional graphene composite was 88%. The maximum specific capacitance of the Ni(OH)2 nanowires/three-dimensional graphene composite was 1664 F·g-1 in 6 mol·L-1 KOH electrolyte at 1 A·g-1. The specific capacitance decreased by only 7% after 3000 cycles at 1 A·g-1. A comparative study of the specific capacitances and cycling performances of Ni(OH)2 nanowires, Ni(OH)2 nanowires/reduced graphene oxide, three-dimensional graphene, reduced graphene oxide, and Ni(OH)2 nanowires/three-dimensional graphene indicated that three-dimensional graphene with three-dimensional porosity and a larger specific surface area than conventional reduced graphene oxide enabled improved use of the active material and significantly enhanced the electrochemical performance of Ni(OH)2 nanowires.



Key wordsGraphene gel      Three-dimensional porosity      Specific capacitance      Hydrothermal method      Capacitance retention     
Received: 09 February 2015      Published: 08 April 2015
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2014CB239702) and Fundamental Research Funds for the Central Universities, China (WA1514011).

Corresponding Authors: ZHOU Jing-Hong     E-mail: jhzhou@ecust.edu.cn
Cite this article:

CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials. Acta Phys. Chim. Sin., 2015, 31(6): 1105-1112.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201504081     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I6/1105

(1) Miller, J. R.; Simon, P. Science 2008, 321 (5889), 651. doi: 10.1126/science.1158736
(2) Wang, J. D.; Peng, T. J.; Sun, H. J.; Hou, Y. D. Acta Phys. -Chim. Sin. 2014, 30 (11), 2077. [汪建德, 彭同江, 孙红娟, 侯云丹. 物理化学学报, 2014, 30 (11), 2077.] doi: 10.3866/PKU.WHXB201409152
(3) Zhu, Y.W.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770
(4) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335 (6074), 1326. doi: 10.1126/science.1216744
(5) Zhang, Y. D.; Lee, S. H.; Yoonessi, M.; Liang, K.W.; Pittman, C. U. Polymer 2006, 47 (9), 2984. doi: 10.1016/j. polymer.2006.03.005
(6) Zhao, Y. Q.; Schiraldi, D. A. Polymer 2005, 46 (25), 11640. doi: 10.1016/j.polymer.2005.09.070
(7) Dong, X. C.; Xu, H.; Wang, X.W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. ACS Nano 2012, 6 (4), 3206. doi: 10.1021/nn300097q
(8) Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132 (40), 13978. doi: 10.1021/ja105296a
(9) Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T.; Yang, Y. H.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Nano Res. 2010, 3 (9), 643. doi: 10.1007/s12274-010-0024-6
(10) Feng, L. D.; Zhu, Y. F.; Ding, H. Y.; Ni, C. Y. J. Power Sources 2014, 267 430. doi: 10.1016/j.jpowsour.2014.05.092
(11) Meher, S. K.; Justin, P.; Rao, G. R. Nanoscale 2011, 3 (2), 683. doi: 10.1039/C0NR00555J
(12) Xia, X. H.; Tu, J. P.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. J. Mater. Chem. 2011, 21 (25), 9319. doi: 10.1039/c1jm10946d
(13) Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y.W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. Adv. Mater. 2011, 23 (6), 791. doi: 10.1002/adma.201003658
(14) Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. RSC Adv. 2012, 2 (5), 1835. doi: 10.1039/c1ra00771h
(15) Ji, J. Y.; Zhang, L. L.; Ji, H. Y.; Li, Y.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. ACS Nano 2013, 7 (7), 6237. doi: 10.1021/nn4021955
(16) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438 (7065), 197. doi: 10.1038/nature04233
(17) Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Adv. Funct. Mater. 2012, 22 (12), 2632. doi: 10.1002/adfm.201102839
(18) Wang, Y. G.; Zhou, D. D.; Zhao, D.; Hou, M. Y.; Wang, C. X.; Xia, Y. Y. J. Electrochem. Soc. 2013, 160 (1), A98.
(19) Li, C.; Shi, G. Q. Nanoscale 2012, 4 (18), 5549. doi: 10.1039/c2nr31467c
(20) Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Adv. Mater. 2013, 25 (40), 5779. doi: 10.1002/adma.v25.40
(21) Zhang, J. T.; Zhao, X. S. J. Phys. Chem. C 2012, 116 (9), 5420. doi: 10.1021/jp211474e
(22) Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20 (18), 3557. doi: 10.1002/adma.200800757
(23) Lu, Y. J.; Wang, H. R.; Gu, Y.; Xu, L.; Sun, X. J.; Deng, Y. D. Acta Chim. Sin. 2012, 70, 1731. [卢亚骏, 王浩然, 顾煜, 徐岚, 孙晓骏, 邓意达. 化学学报, 2012, 70, 1731.] doi: 10.6023/A12070376
(24) Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. J. Am. Chem. Soc. 2009, 131 (29), 9910. doi: 10.1021/ja904251p
(25) Hall, D. S.; Lockwood, D. J.; Poirier, S.; Bock, C.; MacDougall, B. R. J. Phys. Chem. A 2012, 116 (25), 6771. doi: 10.1021/jp303546r
(26) Gao, T.; Jelle, B. P. J. Phys. Chem. C 2013, 117 (33), 17294. doi: 10.1021/jp405149d
(27) Zhang, L.; Yang, X.; Zhang, F.; Long, G. K.; Zhang, T. F.; Leng, K.; Zhang, Y.W.; Huang, Y.; Ma, Y. F.; Zhang, M. T.; Chen, Y. S. J. Am. Chem. Soc. 2013, 135 (15), 5921. doi: 10.1021/ja402552h
(28) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157 (1), 11. doi: 10.1016/j.jpowsour.2006.02.065
(29) Lu, Q.; Chen, J. G.; Xiao, J. Q. Angew. Chem. Int. Edit. 2013, 52 (7), 1882. doi: 10.1002/anie.v52.7
(30) Zhu, J.W.; Chen, S.; Zhou, H.; Wang, X. Nano Res. 2012, 5 (1), 11. doi: 10.1007/s12274-011-0179-9
(31) Liu, H. Y.; Zhang, W.; Song, H. H.; Chen, X. H.; Zhou, J. S.; Ma, Z. K. Electrochim. Acta 2014, 146, 511. doi: 10.1016/j.electacta.2014.09.083
(32) Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7 (11), 845. doi: 10.1038/nmat2297

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[3] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[4] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[5] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1421-1429.
[6] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. Chim. Sin., 2015, 31(4): 783-792.
[7] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.
[8] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2332-2340.
[9] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2165-2173.
[10] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Phys. Chim. Sin., 2015, 31(1): 153-158.
[11] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[12] LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1474-1480.
[13] WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Phys. Chim. Sin., 2014, 30(11): 2077-2084.
[14] TANG Jia-Yong, CAO Pei-Qi, FU Yan-Bao, LI Peng-Hui, MA Xiao-Hua. Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1876-1882.
[15] ZHAO Ning-Ning, HE Cui-Cui, LIU Jian-Bing, MA Hai-Xia, AN Ting, ZHAO Feng-Qi, HU Rong-Zu. Preparation and Characterization of Superthermite Al/Fe2O3 and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Acta Phys. Chim. Sin., 2013, 29(12): 2498-2504.