Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (6): 1179-1185    DOI: 10.3866/PKU.WHXB201504146
Polyimide Aerogels Crosslinked with Chemically Modified Graphene Oxide
LIANG Yi, LU Yun, YAO Wei-Shang, ZHANG Xue-Tong
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
Download:   PDF(1143KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Polyimide (PI) aerogels, which are generally crosslinked using expensive chemical crosslinking agents, are novel porous materials with high strength, high heat resistance, high porosity, and low density. Graphene oxide (GO) is a functional nanofiller that has aroused wide interest in recent years. The reported PI/ GO composites have mostly been in the form of fibers and films. In this study, PI/GO composite aerogels were obtained using chemically modified graphene oxide (m-GO) as the crosslinking agent, instead of traditional ones such as 1,3,5-triaminophenoxybenzene (TAB), by reaction with 4,4'-oxydianiline (ODA) and 3,3',4,4'- biphenyltetracarboxylic dianhydride (BPDA). The chemical modification of GO was achieved by reacting GO with excess ODA using a hydrothermal method. The microstructures of the PI/m-GO aerogels were investigated using scanning electron microscopy (SEM). Nitrogen sorption tests, thermogravimetric analysis, and a hot-wire method were used to investigate the effects of m-GO on the pore properties, thermal stabilities, and thermal conductivities, respectively, of the resulting aerogels. The results show that the PI/m-GO aerogels are highly porous, thermally stable, and heat insulating. Compression tests showed that the PI aerogel prepared using 0.6% (mass fraction, w) m-GO instead of 1.8% (w) TAB as the crosslinking agent had a higher specific Young's modulus [Young's modulus/density (ρ)] and specific yield strength (yield strength/ρ), and less shrinkage.

Key wordsPolyimide aerogel      Graphene oxide      Crosslinking      Mechanical property      Shrinkage ratio     
Received: 30 December 2014      Published: 14 April 2015
MSC2000:  O648  

The project was supported by the National Natural Science Foundation of China (21373024) and Innovation Program of the Beijing Institute of Technology, China.

Corresponding Authors: LU Yun, ZHANG Xue-Tong     E-mail:;
Cite this article:

LIANG Yi, LU Yun, YAO Wei-Shang, ZHANG Xue-Tong. Polyimide Aerogels Crosslinked with Chemically Modified Graphene Oxide. Acta Phys. Chim. Sin., 2015, 31(6): 1179-1185.

URL:     OR

(1) Kistler, S. S. Nature 1931, 127, 741.
(2) Tamon, H.; Ishizaka, H.; Mikami, M.; Okazaki, M. Carbon 1997, 35 (6), 791. doi: 10.1016/S0008-6223(97)00024-9
(3) Wang, Z.; Dai, Z.; Wu, J.; Zhao, N.; Xu, J. Adv. Mater. 2013, 25 (32), 4494. doi: 10.1002/adma.v25.32
(4) Xu, Z. J.; Ji, T.; Zhao, L.; Wang, W. Y.; Yang, C. Y.; Gan, L. H. Acta Phys. -Chim. Sin. 2012, 28 (2), 361. [徐子颉, 吉涛, 赵蕾, 王玮衍, 杨春艳, 甘礼华. 物理化学学报, 2012, 28 (2), 361.] doi: 10.3866/PKU.WHXB201112063
(5) Guo, X. Z.; Yan, L. Q.; Yang, H.; Li, J.; Li, C. Y.; Cai, X. B. Acta Phys. -Chim. Sin. 2011, 27 (10), 2478. [郭兴忠, 颜立清, 杨辉, 李建, 李超宇, 蔡晓波. 物理化学学报, 2011, 27 (10), 2478.] doi: 10.3866/PKU.WHXB20110925
(6) Xu, W.W.; Du, A.; Tang, J.; Chen, K.; Zou, L. P.; Zhang, Z. H.; Shen, J.; Zhou, B. Acta Phys. -Chim. Sin. 2012, 28 (12), 2958. [许维维, 杜艾, 唐俊, 陈珂, 邹丽萍, 张志华, 沈军, 周斌. 物理化学学报, 2012, 28 (12), 2958.] doi: 10.3866/PKU.WHXB201209282
(7) Rhine, W.; Wang, J.; Begag, R. Production of Polyimide Aerogel for Carbon Aerogel, Involves Contacting Diamine and Aromatic Dianhydride Monomers in Solvent, Contacting Resulting Poly(amic acid) with Dehydrating Agent, and Drying Resulting Polyimide Gel. U. S. Patent 2004/0132845 A1, 2004-07-08.
(8) Guo, H.; Meador, M. A. B.; McCorkle, L.; Quade, D. J.; Guo, J.; Hamilton, B.; Cakmak, M.; Sprowl, G. ACS Appl. Mater. Interfaces 2011, 3 (2), 546. doi: 10.1021/am101123h
(9) Guo, H.; Meador, M. A. B.; McCorkle, L.; Quade, D. J.; Guo, J.; Hamilton, B.; Cakmak, M. ACS Appl. Mater. Interfaces 2012, 4
(10), 5422. doi: 10.1021/am301347a
(10) Meador, M. A. B.; Malow, E. J.; Silva, R.; Wright, S.; Quade, D.; Vivod, S. L.; Guo, H.; Guo, J.; Cakmak, M. ACS Appl. Mater. Interfaces 2012, 4 (2), 536. doi: 10.1021/am2014635
(11) Meador, M. A. B.; Wright, S.; Sandberq, A.; Nquyen, B. N.; Vankeuls, F.W.; Mueller, C. H.; Rodríguez-Solís, R.; Miranda, F. A. ACS Appl. Mater. Interfaces 2012, 4 (11), 6346. doi: 10.1021/am301985s
(12) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proceedings of the National Academy of Sciences 2005, 102 (30), 10451. doi: 10.1073/pnas.0502848102
(13) Mkhoyan, K. A.; Contryman, A.W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Nano Lett. 2009, 9 (3), 1058. doi: 10.1021/nl8034256
(14) Shi, H.; Li, Y.; Guo, T. J. Appl. Polym. Sci. 2013, 128 (5), 3163. doi: 10.1002/app.v128.5
(15) Dong, J.; Yin, C.; Zhao, X.; Li, Y.; Zhang, Q. Polymer 2013, 54 (23), 6415. doi: 10.1016/j.polymer.2013.09.035
(16) Huang, T.; Xin, Y. S.; Li, T. S.; Nutt, S.; Su, C.; Chen, H. M.; Liu, P.; Lai, Z. L. ACS Appl. Mater. Interfaces 2013, 5 (11), 4878. doi: 10.1021/am400635x
(17) Park, O. K.; Hwang, J. Y.; Goh, M.; Lee, J. H.; Ku, B. C.; You, N. H. Macromolecules 2013, 46 (9), 3505. doi: 10.1021/ma400185j
(18) Liao, W. H.; Yang, S. Y.; Wang, J. Y.; Tien, H.W.; Hsiao, S. T.; Wang, Y. S.; Li, S. M.; Ma, C. C. M.; Wu, Y. F. ACS Appl. Mater. Interfaces 2013, 5 (3), 869. doi: 10.1021/am302494c
(19) Yoonessi, M.; Shi, Y.; Scheiman, D. A.; Lebron-Colon, M.; Tigelaar, D. M.; Weiss, R. A.; Meador, M. A. ACS Nano 2012, 6 (9), 7644.
(20) Zhang, X.; Sui, Z.; Xu, B.; Yue, S.; Luo, Y.; Zhan, W.; Liu, B. J. Mater. Chem. 2011, 21 (18), 6494. doi: 10.1039/c1jm10239g
(21) Ghani, M. A. A.; Abdallah, D.; Kazmaier, P. M.; Keoshkerian, B.; Buncel, E. Can. J. Chem. 2004, 82 (9), 1403. doi: 10.1139/v04-106
(22) Wang, G. Q. Water Resources Protection 2007, 23 (4), 85. [王国贤. 水资源保护, 2007, 23 (4), 85.]
(23) Chen, H.; Yin, J. 1, 3, 5-Tri (4-amino phenoxy) Benzene and Preparation Method Thereof. CN Patent 1405145 A, 2003-03-26. [陈焕, 印杰. 1, 3, 5-三(4-氨基苯氧基)苯及其制备方法: 中国, CN 1405145 A [P]. 2003-03-26.]
(24) Chidambareswarapattar, C.; Larimore, Z.; Sotiriou-Leventis, C.; Mang, J. T.; Leventis, N. J. Mater. Chem. 2010, 20 (43), 9666. doi: 10.1039/c0jm01844a
(25) Wu, W.; Wang, K.; Zhan, M, S. Ind. Eng. Chem. Res. 2012, 51 (39), 12821. doi: 10.1021/ie301622s
(26) Leventis, N.; Sotiriou-Leventis, C.; Mohite, D. P.; Larimore, Z. J.; Mang, J. T.; Churu, G.; Lu, H. Chem. Mate. 2011, 23 (8), 2250. doi: 10.1021/cm200323e
(27) Yang, S.; Feng, X.; Müllen, K. Adv. Mater. 2011, 23 (31), 3575. doi: 10.1002/adma.201101599

[1] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[2] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[3] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[4] ZHAO Sheng-Jun, ZHANG Wei, DENG Hui-Ning, LIU Wei. Layer-by-Layer Assembly of Graphene Oxide and Polyelectrolyte Composite Membranes for Monovalent Cation Separation[J]. Acta Phys. Chim. Sin., 2016, 32(3): 723-727.
[5] LI Ting, XIANG Shuang-Fei, DONG Wei-Fu, MA Pi-Ming, SHI Dong-Jian, CHEN Ming-Qing. Double-Network Hydrogel Consisting of Nano Na-Montmorillonite with Enhanced Mechanical and Antimicrobial Properties[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2761-2768.
[6] JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1383-1390.
[7] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 913-919.
[8] LI Wen-You, HE Yun-Qiu, LI Yi-Ming. Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction[J]. Acta Phys. Chim. Sin., 2015, 31(3): 457-466.
[9] YANG Jun-Li, WU Cong-Ling, LI Yuan-Hao, LI Wan-Li, MIAO Yan-Qin, GUO Kun-Peng, LIU Hui-Hui, WANG Hua, WU Yong-An. Effect of Graphene Oxide Doped PEDOT:PSS as a Hole Injection Layer on the Luminescence Performance of Organic Light-Emitting Diodes[J]. Acta Phys. Chim. Sin., 2015, 31(2): 377-383.
[10] MA Hui-Ling, ZHANG Long, ZHANG You-Wei, LIU Di, SUN Chao, ZENG Xin-Miao, ZHAI Mao-Lin. γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution[J]. Acta Phys. Chim. Sin., 2015, 31(10): 2016-2022.
[11] YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1932-1938.
[12] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[13] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1267-1273.
[14] YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1180-1186.
[15] YU Hui-Mei, PAN Xiu-Hong, ZHANG Ming-Hui, LIU Yan, YU Jian-Ding. Thermal and Mechanical Properties of Nd3+/Yb3+ Co-Doped Titanate Glass with Upconversion Emissions[J]. Acta Phys. Chim. Sin., 2014, 30(2): 227-231.