Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (7): 1421-1429    DOI: 10.3866/PKU.WHXB201504221
PHYSICAL CHEMISTRY OF MATERIALS     
Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping
HU Hai-Feng1,2, HE Tao1
1 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(1708KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In-doped ZnO nanorods (NRs) were synthesized by hydrothermal method. The X-ray diffraction (XRD) patterns showed that the ZnO lattices expanded upon In doping. According to the scanning electron microscopy (SEM) images, the aspect ratio (length- to- width ratio) of the ZnO NRs decreased as the concentration of In(III) in the precursor solution increased from 0% to 1.0% (atomic fraction, x), and increased with further increases in the In(III) concentration from 1.0%to 5.0%. The nonlinear modulation of the aspect ratio of ZnO NRs is believed to be due to the competition between the subst itutional doping of In3+ (InZn) and formation of InOOH intermediate, both of which are closely related to the behavior of In(OH)4-. In(OH)4- can be adsorbed onto zinc polar plane, and thus inhibits adsorption of Zn(OH)42- growth units. Furthermore, In(OH)4- can convert into InOOH, which can act as a crystal binder and enhance growth along the (002) plane. InZn can disrupt the zinc polar plane, resulting in the suppression of growth along the (002) facet. Therefore, the aspect ratio of ZnO NRs can be controllably modulated by changing the In concentration in the precursor solution. The current study furthers our understanding of the growth mechanism of In-doped ZnO, and presents a feasible method to prepare doped-ZnO NRs for real applications.



Key wordsZnO      In-doping      Hydrothermal method      Aspect ratio      Growth model     
Received: 08 December 2014      Published: 22 April 2015
MSC2000:  O649  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2011CB933200) and Ministry of Science and Technology of China (2015DFG62610).

Corresponding Authors: HE Tao     E-mail: het@nanoctr.cn
Cite this article:

HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping. Acta Phys. Chim. Sin., 2015, 31(7): 1421-1429.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201504221     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I7/1421

(1) Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djuriši?, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K. J. Phys. Chem. B 2006, 110, 20865. doi: 10.1021/jp063239w
(2) Zhu, H. L.; Yang, D. R.; Zhang, H. Inorg. Mater. 2006, 42 (11), 1210. doi: 10.1134/S0020168506110070
(3) Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303, 1348. doi: 10.1126/science.1092356
(4) Yen, K. Y.; Chiu, C. H.; Hsiao, C. Y.; Li, C.W.; Chou, C. H.; Lo, K. Y.; Chen, T. P.; Lin, C. H.; Lin, T. Y.; Gong, J. R. J. Crystal Growth 2014, 387, 91. doi: 10.1016/j.jcrysgro.2013.10.042
(5) Bae, S. Y.; Na, C.W.; Kang, J. H.; Park, J. J. Phys. Chem. B 2005, 109, 2526. doi: 10.1021/jp0458708
(6) Xu, L.; Su, Y.; Chen, Y. Q.; Xiao, H. H.; Zhu, L.; Zhou, Q. T.; Li, S. J. Phys. Chem. B 2006, 110, 6637. doi: 10.1021/jp057476v
(7) Wang, B. Q.; Xia, C. H.; Fu, Q.; Wang, P.W.; Shan, X. D.; Yu, D. P. Acta Phys. -Chim. Sin. 2008, 24 (7), 1165. [王百齐, 夏春辉, 富强, 王朋伟, 单旭东, 俞大鹏. 物理化学学报, 2008, 24 (7), 1165.] doi: 10.3866/PKU.WHXB20080708
(8) Chen, H. S.; Qi, J. J.; Huang, Y. H.; Liao, Q. L.; Zhang, Y. Acta Phys. -Chim. Sin. 2007, 23 (1), 55. [陈红升, 齐俊杰, 黄运华, 廖庆亮, 张跃. 物理化学学报, 2007, 23 (1), 55.] doi: 10.1016/S1872-1508(07)60005-9
(9) Wang, J.; Zhuang, H. Z.; Xue, C. S.; Li, J. L.; Xu, P. Acta Phys. -Chim. Sin. 2010, 26 (10), 2840. [王杰, 庄惠照, 薛成山, 李俊林, 徐鹏. 物理化学学报, 2010, 26 (10), 2840.] doi: 10.3866/PKU.WHXB20101024
(10) Ghosh, S.; Saha, M.; De, S. K. Nanoscale 2014, 6, 7039. doi: 10.1039/c3nr05608b
(11) Su, J.; Li, H. F.; Huang, Y. H.; Xing, X. J.; Zhao, J.; Zhang, Y. Nanoscale 2011, 3, 2182. doi: 10.1039/c1nr10018a
(12) Ismardi, A.; Tiong, T. Y.; Dee, C. F.; Majlis, B. Y. AIP Conf. Proc. 2011, 1341, 25.
(13) Kumar, G. M.; Park, J. J. Colloid Interface Sci. 2014, 430, 229. doi: 10.1016/j.jcis.2014.05.045
(14) Pradhan, D.; Leung, K. T. Langmuir 2008, 24, 9707. doi: 10.1021/la8008943
(15) Xia, Y. J.; Guan, Z. S.; He, T. Chin. Phys. B 2014, 23 (8), 087701-1. [夏玉静, 管自生, 贺涛. 中国物理B, 2014, 23 (8), 087701-1.] doi: 10.1088/1674-1056/23/8/087701
(16) Yang, F.; Liu, W. H.; Wang, X.W.; Zheng, J.; Shi, R. Y.; Zhao, H.; Yang, H. Q. ACS Appl. Mater. Interfaces 2012, 4, 3852. doi: 10.1021/am300561w
(17) Bae, S. Y.; Choi, H. C.; Na, C.W.; Park, J. App. Phys. Lett. 2005, 86, 033102. doi: 10.1063/1.1851591
(18) Ahmad, M.; Sun, H.; Zhu, J. ACS Appl. Mater. Interfaces 2011, 3, 1299. doi: 10.1021/am200099c
(19) Height, M. J.; Mädler, L.; Pratsinis, S. E. Chem. Mater. 2006, 18 (2), 572. doi: 10.1021/cm052163y
(20) Fu, Z. P.; Yang, B. F.; Li, L.; Dong, W.W.; Jia, C.; Wu, W. J. Phys.: Condes. Matter 2003, 15, 2867. doi: 10.1088/0953-8984/15/17/335
(21) Mahmood, K.; Park, S. B.; Sung, H. J. J. Mater. Chem. C 2013, 1, 3138. doi: 10.1039/c3tc00082f
(22) Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie, 1979; pp 1-190.
(23) Faur, M.; Faur, M.; Jayne, D. T.; Goradia, M.; Goradia, C. Surface and Interface Analysis 1990, 15, 641.
(24) Kazmerski, L. L.; Jamjoum, O.; Ireland, P. J.; Deb, S. K.; Mickelsen, R. A.; Chen, W. J. Vac. Sci. Technol. 1981, 19, 467. doi: 10.1116/1.571040
(25) Lin, A.W. C.; Armstrong, N. R.; Kuwana, T. Anal. Chem. 1977, 49 (8), 1228. doi: 10.1021/ac50016a042
(26) McGuire, G. E.; Schweitzer, G. K.; Carlson, T. A. Inorg. Chem. 1973, 12, 2450. doi: 10.1021/ic50128a045
(27) Nefedov, V. I.; Gati, D.; Dzhurinskii, B. F.; Sergushin, N. P.; Salyn, Y. V. Zh. Neorg. Khimii 1975, 20, 2307.
(28) Cahen, D.; Ireland, P. J.; Kazmerski, L. L.; Thiel, F. A. J. Appl. Phys. 1985, 57, 4761. doi: 10.1063/1.335341
(29) Bertrand, P. A. J. Vac. Sci. Technol. 1981, 18, 28. doi: 10.1116/1.570694
(30) Clark, D. T.; Fok, T. Thin Solid Films 1980, 70 (2), 261. doi: 10.1016/0040-6090(80)90367-3
(31) Fan, J. C. C.; Goodenough, J. B. J. Appl. Phys. 1977, 48, 3524. doi: 10.1063/1.324149
(32) Hewitt, R.W.; Winograd, N. J. Appl. Phys. 1980, 51, 2620. doi: 10.1063/1.327991
(33) Wang, X. H.; Sun, L. X. One Process of Orthorhombic InOOH Synthesized by Microemulsion-Solvothermal Method. CN 103241767 A, 2013-08-14. [王晓华, 孙兰轩. 一种斜方晶 InOOH 的微乳-溶剂热工艺: 中国, CN 103241767 A [P]. 2013- 08-14.]
(34) Liu, Q. S.; Lu, W. G.; Ma, A. H.; Tang, J. K.; Lin, J.; Fang, J. Y. J. Am. Chem. Soc. 2005, 127, 5276. doi: 10.1021/ja042550t
(35) Ahmad, M.; Zhao, J.; Iqbal, J.; Miao, W.; Xie, L.; Mo, R. G.; Zhu, J. J. Phys. D: Appl. Phys. 2009, 42, 165406. doi: 10.1088/0022-3727/42/16/165406
(36) Govender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P. J. Mater. Chem. 2004, 14, 2575. doi: 10.1039/b404784b
(37) Wood, S. A.; Samson, I. M. Ore Geol. Rev. 2006, 28, 57. doi: 10.1016/j.oregeorev.2003.06.002
(38) Wang, B. G.; Callahan, M. J.; Xu, C. C.; Bouthillette, L. O.; Giles, N. C.; Bliss, D. F. J. Cryst. Growth 2007, 304, 73. doi: 10.1016/j.jcrysgro.2007.01.047
(39) Morales, A. E.; Zaldivar, M. H.; Pal, U. Opt. Mater. 2006, 29, 100. doi: 10.1016/j.optmat.2006.03.010
(40) Wang, B. The Preparation of In2O3 Nanomaterials with Different Phase Structures and Their Gas Sensing Properties. M. S. Dissertation, Beijing University of Chemical Technology, Beijing, 2011. [王彬. 不同晶型氧化铟纳米材料的制备及其气敏性能研究[D]. 北京: 北京化工大学, 2011.]
(41) Zhuang, Z. B.; Peng, Q.; Liu, J. F.; Wang, X.; Li, Y. D. Inorg. Chem. 2007, 46, 5179. doi: 10.1021/ic061999f
(42) Xu, X. X.; Wang, X. Inorg. Chem. 2009, 48, 3890. doi: 10.1021/ic802449w
(43) Chen, C. L.; Chen, D. R.; Jiao, X. L.; Wang, C. Q. Chem. Commun. 2006, 4632.
(44) Li, Z. H.; Xie, Z. P.; Zhang, Y. F.; Wu, L.; Wang, X. X.; Fu, X. Z. J. Phys. Chem. C 2007, 111, 18348. doi: 10.1021/jp076107r
(45) Yu, D. B.; Yu, S. H.; Zhang, S. Y.; Zuo, J.; Wang, D. B.; Qian, Y. T. Adv. Funct. Mater. 2003, 13, 497. doi: 10.1002/adfm.200304303
(46) Hafeez, M.; Zhai, T. Y.; Bhatti, A. S.; Bando, Y.; Golberg, D. Cryst. Growth Des. 2012, 12, 4935. doi: 10.1021/cg300870y
(47) Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. Edit. 2002, 41, 1188.
(48) Sangwal, K. J. Cryst. Growth 1998, 192, 200. doi: 10.1016/S0022-0248(98)00424-2
(49) Yang, H. X. Solvothermal Synthesis of In2O3 and CeO2 Nanostructures: Structural Studies and Application. Ph. D. Dissertation, Shandong University, Jinan, 2013. [杨红晓. 溶剂热法合成氧化铟、氧化铈纳米结构及其性能研究[D]. 济南: 山东大学, 2013.]

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2018, 34(1): 36-48.
[3] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[4] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[5] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[6] HU Hai-Feng, HE Tao. Controllable Modulation of Morphology and Photocatalytic Performance of ZnO Nanomaterials via pH Adjustment[J]. Acta Phys. Chim. Sin., 2016, 32(2): 543-550.
[7] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[8] WANG Yuan-You, ZHOU Guo-Qiang, ZHANG Long, LIU Tian-Qing. Synthesis and Photocatalytic Characterization of Porous Cu-Doped ZnO Nanorods[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2785-2793.
[9] LI Rui-Wen, WANG Xiao-Lin, SHI Peng, JI He-Fei. Study on Strain Energy on the Hydride Growth Kinetics of U-Nb Alloys[J]. Acta Phys. Chim. Sin., 2015, 31(Suppl): 39-44.
[10] WANG Zhi-Gang, ZENG Xiang-Ming, ZHANG Yang, HUANG Rao, WEN Yu-Hua. First-Principles Study of Effect of Strain on the Band Structure of ZnO Monolayer[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1677-1682.
[11] TONG La-Ga, LIU Jin-Yan, WANG Cen-Chen, RONG Hua, LI Wei. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1615-1620.
[12] YUAN Jun-Hui, GAO Bo, WANG Wen, WANG Jia-Fu. First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1302-1308.
[13] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1105-1112.
[14] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. Chim. Sin., 2015, 31(4): 783-792.
[15] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.