Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (7): 1315-1322    DOI: 10.3866/PKU.WHXB201504222
A Dramatic Influence of Ti Atom on the Electronic Structures of (Al16Ti)n± (n=0?3) Ionic Clusters and Their Interaction with H2O Molecules
LIU Yi-Liang1, HUA Ya-Wen1, JIANG Gang2, CHEN Jun3
1 College of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China;
2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, P. R. China;
3 Science and Technology on Surface Physics and Chemistry Laboratory, China Academy of Engineering Physics, Mianyang 621907, Sichuan Province, P. R. China
Download:   PDF(1275KB) Export: BibTeX | EndNote (RIS)       Supporting Info


The most stable (Al16Ti)n± (n=0-3) ions were modeled and optimized using density functional theory combined with all-electron spin-polarized calculations. The geometries, stabilities, and electronic structures of the (Al16Ti)n ± (n=0-3) ionic clusters, as well as the adsorption structures and adsorption energies of H2O molecules on the (Al16Ti)n± (n=0-3) ionic clusters, were studied. The results were compared with those obtained for pure (Al17Ti)n± (n=0-3) ionic clusters. The spatial distributions of the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals for the (Al16Ti)n± (n=0-3) ionic clusters showed that the free electrons tend to occupy Ti sites. And a few residual free electrons would occupy sites with large curvatures. An extensive structure search was performed to identify the low-energy conformations of (Al16TiH2O)n± (n=0-3) complexes. Based on the geometries of the studied adsorption complexes, it was found that the most stable structures were prone to oxygen-based adsorption onto Ti atom. (Al16TiH2O)+ ion featured the shortest average O―H bond length, that was ~0.0003 nm longer than that observed in isolated H2O molecule. The O―H bond length increased with either increasing or decreasing number of the electrons. The studies implied that Ti dopant in Al ionic clusters improved the dissociation efficiency of H2O molecules. Furthermore, the doping effect played a more important role than the geometry effect in determining the electronic structures of the (Al16Ti)n ionic clusters and their interaction with H2O molecules.

Key words(Al16Ti)n±      (n=0-3) ions      Adsorption of H2O molecule      Geometric structure      Electronic structure      Effect of doping     
Received: 19 January 2015      Published: 22 April 2015
MSC2000:  O641  

The project was supported by the Special Funds of the National Natural Science Foundation of China (11247232), Scientific Research Foundation of the Education Department of Sichuan Province, China (14ZB0465), and Fundamental Research Fund for the Central Universities, Southwest University for Nationalities, China (2015NYB05).

Corresponding Authors: LIU Yi-Liang     E-mail:
Cite this article:

LIU Yi-Liang, HUA Ya-Wen, JIANG Gang, CHEN Jun. A Dramatic Influence of Ti Atom on the Electronic Structures of (Al16Ti)n± (n=0?3) Ionic Clusters and Their Interaction with H2O Molecules. Acta Phys. -Chim. Sin., 2015, 31(7): 1315-1322.

URL:     OR

(1) Singh, G.; Chan, H.; Baskin, A.; Gelman, E.; Repnin, N.; Král, P.; Klajn, R. Science 2014, 345, 1149. doi: 10.1126/science.1254132
(2) Jiang, J.; Li, G.; Kong, L. H. Acta Phys. -Chim. Sin. 2015, 31 (1), 137. [姜俊, 李钢, 孔令浩. 物理化学学报, 2015, 31 (1), 137.] doi: 10.3866/PKU.WHXB201411171
(3) Zhao, W. G.; Su, L.; Zhou, Z. N.; Zhang, H. J.; Lu, L. L.; Zhang, S.W. Acta Phys. -Chim. Sin. 2015, 31 (1), 145. [赵万国, 苏丽, 周振宁, 张海军, 鲁礼林, 张少伟. 物理化学学报, 2015, 31 (1), 145.] doi: 10.3866/PKU.WHXB201411171
(4) Jia, J.; Wang, J. Z.; Liu, X.; Xue, Q. K.; Li, Z. Q.; Kawazoe, Y.; Zhang, S. B. Appl. Phys. Lett. 2002, 80 (17), 3186. doi: 10.1063/1.1474620
(5) Roach, P. J.; Woodward, W. H.; Castleman, A.W.; Reber, A. C.; Khanna, S. N. Science 2009, 323 (5913), 492. doi: 10.1126/science.1165884
(6) Chuang, F. C.; Wang, C.; Ho, K. Phys. Rev. B 2006, 73 (12), 125431. doi: 10.1103/PhysRevB.73.125431
(7) Sun, J.; Lu, W. C.; Li, Z. S.; Wang, C. Z.; Ho, K. M. J. Chem. Phys. 2008, 129 (1), 014707. doi: 10.1063/1.2946695
(8) Noya, E.; Doye, J.; Calvo, F. Phys. Rev. B 2006, 73 (12), 125407. doi: 10.1103/PhysRevB.73.125407
(9) Schultz, N. E.; Staszewska, G.; Staszewski, P.; Truhlar, D. G. J. Phys. Chem. B 2004, 108 (15), 4850. doi: 10.1021/jp0370223
(10) Xiang, H.; Kang, J.; Wei, S. H.; Kim, Y. H.; Curtis, C.; Blake, D. J. Am. Chem. Soc. 2009, 131 (24), 8522. doi: 10.1021/ja900965w
(11) Alexandrou, E. I.; Gross, A.; Bacalis, N. C. J. Chem. Phys. 2010, 132 (15), 154701. doi: 10.1063/1.3376174
(12) Kawamura, H.; Kumar, V.; Sun, Q.; Kawazoe, Y. Phys. Rev. B 2001, 65 (4), 045406. doi: 10.1103/PhysRevB.65.045406
(13) Mosch, C.; Koukounas, C.; Bacalis, N.; Metropoulos, A.; Gross, A.; Mavridis, A. J. Phys. Chem. C 2008, 112 (17), 6924. doi: 10.1021/jp711991b
(14) Shimojo, F.; Ohmura, S.; Kalia, R. K.; Nakano, A.; Vashishta, P. Phys. Rev. Lett. 2010, 104 (12), 126102. doi: 10.1103/PhysRevLett.104.126102
(15) Álvarez-Barcia, S.; Flores, J. R. J. Phys. Chem. C 2011, 115 (50), 24849. doi: 10.1021/jp208258j
(16) Álvarez-Barcia, S.; Flores, J. R. J. Phys. Chem. A 2012, 116 (30), 8040. doi: 10.1021/jp303911s
(17) Reber, A. C.; Roach, P. J.; Woodward, W. H.; Khanna, S. N.; Castleman, A.W. J. Phys. Chem. A 2012, 116 (30), 8085. doi: 10.1021/jp3047196
(18) Liu, Y.; Hua, Y.; Jiang, M.; Jiang, G.; Chen, J. J. Chem. Phys. 2012, 136 (8), 084703. doi: 10.1063/1.3685603
(19) Liu, Y.; Hua, Y.; Jiang, M.; Xu, M.; Yu, F.; Chen, J. Eur. Phys. J. D 2013, 67 (9), 194. doi: 10.1140/epjd/e2013-40013-x
(20) Lim, H. K.; Shin, H.; Goddard, W. A.; Hwang, Y. J.; Min, B. K.; Kim, H. J. Am. Chem. Soc. 2014, 136 (32), 11355. doi: 10.1021/ja503782w
(21) Li, Z.Y.; Yuan, Z.; Li, X. N.; Zhao, Y. X.; He, S. G. J. Am. Chem. Soc. 2014, 136 (40), 14307. doi: 10.1021/ja508547z
(22) Nie, J.; Lu, Z. H.; Yao, J.; Gui, T.; Chen, X. S. Acta Phys. -Chim. Sin. 2013, 29 (7), 1433. [聂静, 卢章辉, 姚军, 桂田, 陈祥树. 物理化学学报, 2013, 29 (7), 1433.] doi: 10.3866/PKU.WHXB201304272
(23) Kurkina, L. I.; Farberovich, O. V.; Gorbunov, V. A. J. Phys. Condes. Matter 1993, 5 (33), 6029. doi: 10.1088/0953-8984/5/33/012
(24) Lang, S. M.; Claes, P.; Neukermans, S.; Janssens, E. J. Am. Soc. Mass Spectrom. 2011, 22 (9), 1508. doi: 10.1007/s13361-011-0181-1
(25) Hua, Y.; Liu, Y.; Jiang, G.; Du, J.; Chen, J. J. Phys. Chem. A 2013, 117 (12), 2590. doi: 10.1021/jp309629y
(26) Delley, B. J. Chem. Phys. 1990, 92 (1), 508. doi: 10.1063/1.458452
(27) Delley, B. J. Chem. Phys. 1991, 94 (11), 7245. doi: 10.1063/1.460208
(28) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015
(29) Becke, A. D. J. Chem. Phys. 1988, 88 (4), 2547. doi: 10.1063/1.454033
(30) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45 (23), 13244. doi: 10.1103/PhysRevB.45.13244
(31) Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L. J. Comput. Phys. 1997, 131 (1), 233. doi: 10.1006/jcph.1996.5612
(32) Lide, D. R. Handbook of Chemistry and Physics on CD-ROM; CRC Press: Florida, 2003; Sec. 9, p 19.

[1] Fuzhen BI,Xiao ZHENG,Chiyung YAM. First-Principles Study of Mixed Cation Methylammonium-Formamidinium Hybrid Perovskite[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 69-75.
[2] Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976.
[3] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[4] Tao JING,Ying DAI. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 295-304.
[5] Lei PEI,Gui-Ling ZHANG,Yan SHANG,Cui-Cui SUN,Tian GAN. Silicon Bridge-Tuned Electronic Structures and Transport Properties of Polymetallocenes[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2495-2502.
[6] AO Bing-Yun, YE Xiao-Qiu, CHEN Pi-Heng. Progress in Theoretical Research on Plutonium-Based Solid-State Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 3-13.
[7] LI Ru-Song, HE Bin, LI Gang, XU Peng, LU Xin-Cheng, WANG Fei. An Electronic Structure Calculation for 5f States of δ Phase Plutonium Based on the Density Functional Theory Method[J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 75-80.
[8] YUAN Jun-Hui, GAO Bo, WANG Wen, WANG Jia-Fu. First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1302-1308.
[9] HUANG Hao-Jie, XU Jiang. First-Principles Study into the Effect of Substitutional Al Alloying on the Mechanical Properties and Electronic Structure of D88-Ti5Si3[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 253-260.
[10] Yan. SHAO,Fang-Ping. OUYANG,Sheng-Lin. PENG,Qi. LIU,Zhi-An. JIA,Hui. ZOU. First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2083-2090.
[11] MI Chuan-Tong, LIU Guo-Ping, WANG Jia-Jia, GUO Xin-Li, WU San-Xie, YU Jin. First-Principles Calculations of the Adsorption of Au, Ag and Cu Atoms on Defected Graphene[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1230-1238.
[12] CHENG He-Ping, CHEN Guang-Hua, QIN Rui, DAN Jia-Kun, HUANG Zhi-Meng, PENG Hui, CHEN Tu-Nan, LEI Jiang-Bo. Electronic Structures and Optical Properties of Poly(vinylidene fluoride) Crystals[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 281-288.
[13] ZOU Ai-Hua, XU Jiang, HUANG Hao-Jie. Effects of the Alloying Elements Ti, Cr, Al and B on the Mechanical Properties and Electronic Structure of α-Nb5Si3[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 289-296.
[14] LUO Yun-Qing, QIU Mei, YANG Wei, ZHU Jia, LI Yi, HUANG Xin, ZHANG Yong-Fan. Configuration and Electronic Structure of W3O9 Clusters Supported on Li- and Al-Doped MgO(001) Surfaces[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2224-2232.
[15] CUI Jian-Gong, ZHANG Xia, YAN Xin, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min. Electronic Structure Modulation of GaAs Nanowires by Surface Modification[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1841-1846.