Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (7): 1383-1390    DOI: 10.3866/PKU.WHXB201504292
CATALYSIS AND SURFACE SCIENCE     
Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR
JIAO Jin-Zhen1, LI Shi-Hui1, HUANG Bi-Chun1,2
1 College of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China;
2 Key Laboratory of the Ministry of Education for Pollution Control and Ecosystem Restoration in Industry Clusters, South China University of Technology, Guangzhou 510006, P. R. China
Download:   PDF(1184KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene oxide (GO) was synthesized using an improved Hummers method. Subsequently, catalysts of manganese oxides (at varying loadings) supported on graphene (MnOx/GR) were prepared by hydrothermal reaction for application in the selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. The structural properties and catalytic performance were evaluated by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that abundant functional groups existed on the surface of the prepared GO that could combine with manganese during preparation of the catalysts. Manganese oxide entities, with different crystallinities (MnO, Mn3O4, or MnO2), were dispersed on the surface of graphene. The results of the catalytic studies showed that the MnOx/GR catalysts prepared with different MnOx loadings all exhibited excellent low-temperature SCR activities. The catalyst with 20%(w) MnOx displayed the best activity, which was attributed to the high content of high-valent manganese and oxygen adsorbed onto the catalyst surface, as well as to the enhancement in redox abilities and the addition of active sites at low temperatures.



Key wordsSelective catalytic reduction      Nitrogen oxide      Graphene      Graphene oxide      Manganese oxide     
Received: 07 January 2015      Published: 29 April 2015
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (51478191).

Corresponding Authors: HUANG Bi-Chun     E-mail: cebhuang@scut.edu.cn
Cite this article:

JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR. Acta Phys. Chim. Sin., 2015, 31(7): 1383-1390.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201504292     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I7/1383

(1) Qi, G.; Yang, R.T. Appl. Catal. B: Environ. 2003, 44, 217. doi: 10.1016/S0926-3373(03)00100-0
(2) Park, T. S.; Jeong, S. K.; Hong, S. H.; Hong, S. C. Ind. Eng. Chem. Res. 2001, 40, 4491. doi: 10.1021/ie010218+
(3) Huang, B. C.; Huang, R.; Jin, D. J.; Ye, D. Q. Catal. Today 2007, 126, 279. doi: 10.1016/j.cattod.2007.06.002
(4) Thirupathi, B.; Smirniotis, P. G. Appl. Catal. B: Environ. 2011, 110, 195. doi: 10.1016/j.apcatb.2011.09.001
(5) Huang, P.; Pan, S.W.; Huang, B. C.; Cheng, H.; Ye, D. Q.; Wu, J. L.; Fu, M. L.; Lu, S. L. Acta Phys. -Chim. Sin. 2013, 29, 176. [黄萍, 盘思伟, 黄碧纯, 程华, 叶代启, 吴军良, 付名利, 卢圣良. 物理化学学报, 2013, 29, 176.] doi: 10.3866/PKU.WHXB201210094
(6) Ma, Z. X.; Yang, H. S.; Liu, F.; Zhang, X. B. Appl. Catal. A: Gen. 2013, 467, 450. doi: 10.1016/j.apcata.2013.08.020
(7) Tang, X. L.; Hao, J. M.; Yi, H. H.; Li, J. H. Catal. Today 2007, 126, 406. doi: 10.1016/j.cattod.2007.06.013
(8) Masaaki, Y.; Akinori, Y.; Isao, Mochida. Appl. Catal. A 1998, 173, 239. doi: 10.1016/S0926-860X(98)00182-3
(9) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012
(10) Fang, C.; Zhang, D. S.; Cai, S. X.; Zhang, L.; Huang, L.; Li, H. R.; Maitarad, P.; Shi, L. Y.; Gao, R. H.; Zhang, J. P. Nanoscale 2013, 5, 9199. doi: 10.1039/c3nr02631k
(11) Pourkhalil, M.; Moghaddam, A. Z.; Rashidi, A.; Towfighi, J.; Mortazavi, Y. Appl. Surf. Sci. 2013, 279, 250. doi: 10.1016/j.apsusc.2013.04.076
(12) Li, N.; Geng, Z. F.; Cao, M. H.; Ren, L.; Zhao, X. Y.; Liu, B.; Tian, Y.; Hu, C.W. Carbon 2013, 54, 124. doi: 10.1016/j.carbon.2012.11.009
(13) Bruno, F. M.; Philippe, S. Catal. Sci. Technol. 2012, 2, 54.
(14) Moussa, S. O.; Panchakarla, L. S.; Ho, M. Q.; El-Shall, M. S. ACS Catal. 2014, 4, 535. doi: 10.1021/cs4010198
(15) Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. Nano Lett. 2007, 7, 3394. doi: 10.1021/nl0717715
(16) Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Mater.Today 2014, 17, 184. doi: 10.1016/j.mattod.2014.04.001
(17) Li, L.; Seng, K. H.; Liu, H. K.; Nevirkovets, I. P.; Guo, Z. P. Electrochim. Acta 2013, 87, 801. doi: 10.1016/j.electacta.2012.08.127
(18) Li, M.; Liu, Q.; Jia, Z. J.; Xu, X. C.; Cheng, Y. F.; Zheng, Y. F.; Xi, T. F.; Wei, S. C. Carbon 2014, 67, 185. doi: 10.1016/j.carbon.2013.09.080
(19) Lu, X.; Song, C.; Chang, C.; Teng, Y.; Tong, Z.; Tang, X. Ind. Eng. Chem. Res. 2014, 53, 11601. doi: 10.1021/ie5016969
(20) Romero, H. E.; Joshi, P.; Gupta, A. K.; Gutierrez, H. R.; Cole, M.W.; Tadigadapa, S. A.; Ekluud, P. C. Nanotechnology 2009, 20, 245501. doi: 10.1088/0957-4484/20/24/245501
(21) Chen, S.; Zhu, J.W.; Wu, X. D.; Han, Q. F.; Wang, X. ACS Nano 2010, 4, 2822. doi: 10.1021/nn901311t
(22) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806. doi: 10.1021/nn1006368
(23) Tang, X. L.; Hao, J. M.; Yi, H. H.; Ning, P. J. Rare Earths 2007, 25, 240. doi: 10.1016/S1002-0721(07)60479-7
(24) Jeong, H.; Lee, Y. P.; Jin, M. H.; Kim, E. S.; Bae, J. J.; Lee, Y. H. Chem. Phys. Lett. 2009, 470, 255. doi: 10.1016/j.cplett.2009.01.050
(25) Gu, Z.; Li, C.; Wang, G.; Zhang, L.; Li, X.; Wang, W.; Jin, S. J. Polym. Sci. Part B: Polym. Phys. 2010, 48, 1329. doi: 10.1002/polb.v48:12
(26) Kai, K.; Yoshida, Y.; Kobayashi, Y.; Kageyama, H.; Saito, G. Dalton Trans. 2011, 41, 825.
(27) Buciuman, F.; Patcas, F.; Craciun, R.; Zahn, D. R. T. Phys. Chem. Chem. Phys. 1999, 1, 185. doi: 10.1039/a807821a
(28) Ferrari, A. C.; Basko, D. M. Nat. Nanotechnology 2013, 8, 235. doi: 10.1038/nnano.2013.46
(29) Li, B.; Zhou, L.; Wu, D.; Peng, H. L.; Yan, K.; Zhou, Y.; Liu, Z. F. ACS Nano 2011, 5, 5957. doi: 10.1021/nn201731t
(30) Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R. J. Phys.: Condens. Matter 2008, 20, 472204. doi: 10.1088/0953-8984/20/47/472204
(31) Lee, J.; Novoselov, K. S.; Shin, H. S. ACS Nano 2011, 5, 608. doi: 10.1021/nn103004c
(32) Jiang, L.; Yao, M.; Liu, B.; Li, Q.; Liu, R.; Lv, H.; Lu, S.; Gong, C.; Zou, B.; Cui, T.; Liu, B. B. Crystengcomm 2013, 15, 3739. doi: 10.1039/c3ce27109a
(33) Han, Y. F.; Chen, F. X.; Zhong, Z. Y.; Ramesh, K.; Widjaja, E.; Chen, L.W. Catal. Commun. 2006, 7, 739. doi: 10.1016/j.catcom.2006.08.006
(34) Huang, H. C.; Ye, D. Q.; Huang, B. C.; Wei, Z. L. Catal. Today 2008, 139, 100. doi: 10.1016/j.cattod.2008.08.028
(35) Lu, P.; Li, C. T.; Zeng, G. M.; He, L. J.; Peng, D. L.; Cui, H. F.; Li, S. H.; Zhai, Y. B. Appl. Catal. B 2010, 96, 157. doi: 10.1016/j.apcatb.2010.02.014
(36) Zhang, J. T.; Xiong, Z. G.; Zhao, X. S. J. Mater. Chem. 2011, 21, 3634. doi: 10.1039/c0jm03827j
(37) Park, E.; Kim, M.; Jung, H.; Chin, S.; Jurng, J. ACS Catal. 2013, 3, 1518. doi: 10.1021/cs3007846
(38) Ponce, S.; Peña, M. A.; Fierro, J. L. G. Appl. Catal. B: Environ. 2000, 24, 193. doi: 10.1016/S0926-3373(99)00111-3
(39) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A: Gen. 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024
(40) Yang, C.; Liu, X. Q.; Huang, B. C.; Wu, Y. M. Acta Phys. -Chim. Sin. 2014, 30, 1805. [杨超, 刘小青, 黄碧纯, 吴友明. 物理化学学报, 2014, 30, 1805.] doi: 10.3866/PKU.WHXB201407162

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[7] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[8] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[9] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[10] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[11] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[12] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[13] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[14] WANG Xu-Chun, LI Jin-Ze, LI Guang-Yong, WANG Jin, ZHANG Xue-Tong, GUO Qiang. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2141-2152.
[15] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.