Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (7): 1374-1382    DOI: 10.3866/PKU.WHXB201504302
CATALYSIS AND SURFACE SCIENCE     
Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6
HU Si1, ZHANG Qing2, YIN Qi2, ZHANG Ya-Fei2, GONG Yan-Jun2, ZHANG Ying1, WU Zhi-Jie2, DOU Tao2
1 Department of Materials Science and Engineering, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China;
2 The Key Laboratory of Catalysis, China National Petroleum Corporation, China University of Petroleum-Beijing, Beijing 102249, P. R. China
Download:   PDF(749KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A sequential modification by sodium hydroxide (NaOH) and ammonium hexafluorosilicate ((NH4)2SiF6) solution was used for preparing MTP (methanol to propylene reaction) catalyst for the first time. The parent and modified samples were characterized by diverse techniques including powder X-ray diffraction (XRD), X-ray fluorescence (XRF) spectroscopy, N2 adsorption-desorption, transmission electron microscopy (TEM), and NH3 temperature-programmed desorption (NH3-TPD). The effect of modification on the physicochemical properties, such as framework, chemical composition, texture, and acidity, were investigated in detail. The results showed that the mesopore volume of the zeolite catalyst increased significantly following sequential NaOH and (NH4)2SiF6 modification. The acidity was also modulated effectively. The composite modification method successfully overcame the disadvantages associated with individual simple alkali and (NH4)2SiF6 treatments. For instance, using a simple alkali treatment would destroy the framework of the zeolite easily, whereas using a simple (NH4)2SiF6 treatment would only modify the external surface of the zeolite owing to the limited diffusion of the ammonium hexafluorosilicate molecule. When used in MTP reaction, the induction period of the composite modified sample was greatly shortened, and the initial selectivity for propylene increased to 43% under the following operating conditions: T=470 ℃, p=0.1 MPa (pMeOH=50 kPa), and weight hourly space velocity (WHSV)=2 h-1. Moreover, the composite modified zeolite catalyst exhibited significantly improved stability, and the catalytic lifespan was triple that of the parent sample.



Key wordsAlkali treatment      Ammonium hexafluorosilicate      Composite modification      Mesopore      Acidity      Methanol to propylene     
Received: 07 January 2015      Published: 30 April 2015
MSC2000:  O643.3  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2012CB215002) and National Natural Science Foundation of China (21206192).

Corresponding Authors: DOU Tao     E-mail: doutao@cup.edu.cn
Cite this article:

HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6. Acta Phys. Chim. Sin., 2015, 31(7): 1374-1382.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201504302     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I7/1374

(1) Koempel, H.; Liebner, W. Lurgi's Methanol to Propylene (MTP) Report on a Successful Commercialisation. In Studies in Surface Science and Catalysis; Noronha, F. B., Schmal, M., Sousa- Aguiar, E. F. Eds.; Elsevier: Frankfurt, 2007; Vol. 167, pp 261-267.
(2) Stöcker, M. Microporous Mesoporous Mat. 1999, 29, 3. doi: 10.1016/S1387-1811(98)00319-9
(3) Wen, P. Y.; Mei, C. S.; Liu, H. X.; Yang, W. M.; Chen, Q. L. Chemical Reaction Engineering and Technology 2007, 23, 385. [温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆龄. 化学反应工程与工艺, 2007, 23, 385.]
(4) Mei, C. S.; Wen, P. Y.; Liu, Z. C.; Liu, H. X.; Wang, Y. D.; Yang, W. M.; Xie, Z. K.; Hua, W. M.; Gao, Z. J. Catal. 2008, 258, 243. doi: 10.1016/j.jcat.2008.06.019
(5) Wen, P. Y.; Mei, C. S.; Liu, H. X.; Yang, W. M.; Chen, Q. L. Chemical Reaction Engineering and Technology 2007, 23, 481. [温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆龄. 化学反应工程与工艺, 2007, 23, 481.]
(6) Wen, P. Y.; Mei, C. S.; Liu, H. X.; Yang, W. M.; Chen, Q. L. Acta Petrolei Sinica (Petroleum Processing Section) 2008, 24, 446. [温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆龄. 石油学报(石油加工), 2008, 24, 446.]
(7) Firoozi, M.; Baghalha, M.; Asadi, M. Catal. Commum. 2009, 10, 1582. doi: 10.1016/j.catcom.2009.04.021
(8) Hu, S.; Gong, Y. J.; Xu, Q. H.; Liu, X. L.; Zhang, Q.; Zhang, L. L.; Dou, T. Catal. Commum. 2012, 28, 95. doi: 10.1016/j.catcom.2012.08.011
(9) Hu, S.; Gong, Y. J.; Zhang, Q.; Zhang, J. L.; Zhang, Y. F.; Yang, F. Y.; Dou, T. Journal of Chemical Industry and Engineering (China) 2012, 63, 3889. [胡思, 巩雁军, 张卿, 张军亮, 张亚飞, 杨飞鹰, 窦涛. 化工学报, 2012, 63, 3889.]
(10) Hu, S.; Shan, J.; Zhang, Q.; Wang, Y.; Liu, Y. S.; Gong, Y. J.; Wu, Z. J.; Dou, T. Appl. Catal. A 2012, 445-446, 215.
(11) Sun, X. Y.; Mueller, S.; Shi, H.; Haller, G. L.; Sanchez-Sanchez, M.; van Veen, A. C.; Lercher, J. A. J. Catal. 2014, 314, 21. doi: 10.1016/j.jcat.2014.03.013
(12) Olsbye, U.; Svelle, S.; Bjorgen, M.; Beato, P.; Janssens, T. V. W.; Joensen, F.; Bordiga, S.; Lillerud, K. P. Angew. Chem. Int. Edit. 2012, 51, 5810. doi: 10.1002/anie.201103657
(13) Zhang, Q.; Hu, S.; Zhang, L. L.; Wu, Z. J.; Gong, Y. J.; Dou, T. Green Chem. 2014, 16, 77. doi: 10.1039/C3GC41327F
(14) Zhao, T. S.; Takemoto, T.; Tsubaki, N. Catal. Commun. 2006, 7, 647. doi: 10.1016/j.catcom.2005.11.009
(15) Guo, Q. S.; Mao, D. S.; Lao, Y. P.; Lu, G. Z. Chin. J. Catal. 2009, 30, 1248. [郭强胜, 毛东森, 劳嫣萍, 卢冠忠. 催化学报, 2009, 30, 1248.]
(16) Mao, D. S.; Guo, Q. S.; Meng, T. Acta Phys. -Chim. Sin. 2010, 26, 2242. [毛东森, 郭强胜, 孟涛. 物理化学学报, 2010, 26, 2242.] doi: 10.3866/PKU.WHXB20100814
(17) Mao, D. S.; Guo, Q. S.; Meng, T. Acta Phys. -Chim. Sin. 2010, 26, 338. [毛东森, 郭强胜, 孟涛. 物理化学学报, 2010, 26, 338.] doi: 10.3866/PKU.WHXB20100208
(18) Zhu, X. L.; Lobban, L. L.; Mallinson, R. G.; Resasco, D. E. J. Catal. 2010, 271, 88. doi: 10.1016/j.jcat.2010.02.004
(19) Zhao, L.; Shen, B. J.; Gao, F. S.; Xu, C. M. J. Catal. 2008, 258, 228. doi: 10.1016/j.jcat.2008.06.015
(20) Groen, J. C.; Zhu, W. D.; Brouwer, S.; Huynink, S. J.; Kapteijn, F.; Moulijn, J. A.; Perez-Ramirez, J. J. Am. Chem. Soc. 2007, 129, 355. doi: 10.1021/ja065737o
(21) Hu, S.; Zhang, Q.; Xia, Z.; Gong, Y. J.; Xu, J.; Deng, F.; Dou, T. Acta Phys. -Chim. Sin. 2012, 28, 2705. [胡思, 张卿, 夏至, 巩雁军, 徐君, 邓风, 窦涛. 物理化学学报, 2012, 28, 2705.] doi: 10.3866/PKU.WHXB201207171
(22) Zhao, G. L.; Teng, J.W.; Xie, Z. K.; Tang, Y.; Yang, W. M.; Chen, Q. L. Chin. J. Catal. 2005, 26, 1083. [赵国良, 滕加伟, 谢在库, 唐颐, 杨为明, 陈庆龄. 催化学报, 2005, 26, 1083.]
(23) Song, M. J.; Zou, C. L.; Niu, G. X.; Zhao, D. Y. Chin. J. Catal. 2012, 33, 140. [宋明娟, 邹成龙, 牛国兴, 赵东元. 催化学报, 2012, 33, 140.] doi: 10.1016/S1872-2067(10)60283-5
(24) Han, S.; Shihabi, D. S.; Chang, C. D. J. Catal. 2000, 196, 375. doi: 10.1006/jcat.2000.3037
(25) Sun, C.; Du, J. M.; Liu, J.; Yang, Y. S.; Ren, N.; Shen, W.; Xu, H. L.; Tang, Y. Chem. Commun. 2010, 46, 2671. doi: 10.1039/b925850g
(26) Qin, Z. X.; Shen, B. J.; Gao, X. H.; Lin, F.; Wang, B. J.; Xu, C. M. J. Catal. 2011, 278, 266. doi: 10.1016/j.jcat.2010.12.013
(27) Bjørgen, M.; Joensen, F.; Lillerud, K. P.; Olsbye, U.; Svelle, S. Catal. Today 2009, 142, 90. doi: 10.1016/j.cattod.2009.01.015
(28) Brogaard, R. Y.; Henry, R.; Schuurman, Y.; Medford, A. J.; Moses, P. G.; Beato, P.; Svelle, S.; Nørskov, J. K.; Olsbye, U. J. Catal. 2014, 314, 159. doi: 10.1016/j.jcat.2014.04.006
(29) Liu, J.; Zhang, C. X.; Shen, Z. H.; Hua, W. M.; Tang, Y.; Shen, W.; Yue, Y. H.; Xu, H. L. Catal. Commun. 2009, 10, 1506. doi: 10.1016/j.catcom.2009.04.004
(30) Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461, 246. doi: 10.1038/nature08288

[1] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[2] HU Yi-Hao, SONG Tong-Yang, WANG Yue-Juan, HU Geng-Sheng, XIE Guan-Qun, LUO Meng-Fei. Gas Phase Dehydrochlorination of 1,1,2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1017-1026.
[3] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. Chim. Sin., 2017, 33(2): 270-282.
[4] LI Cui-Can, ZHANG Meng-Xiao, HUA Wei-Ming, YUE Ying-Hong, GAO Zi. Effect of the Carbon Precursor on the Design of Perfluorosulfonic Acid Functionalized Carbon Catalysts[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1747-1752.
[5] PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein[J]. Acta Phys. Chim. Sin., 2015, 31(5): 965-972.
[6] ZHANG Chang, QIN Yu-Cai, GAO Xiong-Hou, ZHANG Hai-Tao, MO Zhou-Sheng, CHU Chun-Yu, ZHANG Xiao-Tong, SONG Li-Juan. Modulation of the Acidity and Catalytic Conversion Properties of Y Zeolites Modified by Cerium Cations[J]. Acta Phys. Chim. Sin., 2015, 31(2): 344-352.
[7] ZHANG Lan-Lan, SONG Yu, LI Guo-Dong, ZHANG Shao-Long, SHANG Yun-Shan, GONG Yan-Jun. ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2139-2150.
[8] MIAO Hai-Xia, MA Li, MA Jing-Hong, LI Dui-Chun, LI Rui-Feng. Benzylation of Naphthalene over a Mesoporous ZSM-5 Zeolite Microsphere Catalyst[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1518-1526.
[9] QIN Yu-Cai, GAO Xiong-Hou, DUAN Lin-Hai, FAN Yue-Chao, YU Wen-Guang, ZHANG Hai-Tao, SONG Li-Juan. Effects on Adsorption Desulfurization of CeY Zeolites:Acid Catalysis and Competitive Adsorption[J]. Acta Phys. Chim. Sin., 2014, 30(3): 544-550.
[10] ZHANG Xiao-Tong, YU Wen-Guang, QIN Yu-Cai, DONG Shi-Wei, PEI Ting-Ting, WANG Lin, SONG Li-Juan. Influence of Surface Acidity of Y Zeolites on the Adsorption of Organic Molecules by In situ Fourier Transform Infrared Spectroscopy[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1273-1280.
[11] LIU Liang-Hong, ZHANG Peng-Fei, HUANG Ying. Molecular Acidity of Singly and Doubly Substituted Phenols: Predictions from Density Functional Reactivity Theory and Hammett Constants[J]. Acta Phys. Chim. Sin., 2013, 29(03): 508-515.
[12] HONG Xiao-Ting, WU Xiao-Hui, MO Ming-Yue, LUO Zhi-Ping, HUI Kwan San, CHEN Hong-Yu, LI Lai-sheng, HUI Kwun Nam, ZHANG Qiu-Yun. Synthesis and Electrochemical Capacitive Performances of Novel Hierarchically Micro-Meso-Structured Porous Carbons Fabricated Using Microporous Rod-Like Hydroxyapatites as a Template[J]. Acta Phys. Chim. Sin., 2013, 29(02): 298-304.
[13] GE Dong-Lai, FAN Ying-Ju, YIN Long, SUN Zhong-Xi. Determination of the Adsorption of Xanthate on Mesoporous CuAl2O4 Using a Continuous Online In situ ATR-FTIR Technology[J]. Acta Phys. Chim. Sin., 2013, 29(02): 371-376.
[14] HUANG Ping, PAN Si-Wei, HUANG Bi-Chun, CHENG Hua, YE Dai-Qi, WU Jun-Liang, FU Ming-Li, LU Sheng-Liang. Structural Properties of MnOx/Al-SBA-15 in Low-Temperature Selective Catalytic Reduction of NOx with NH3[J]. Acta Phys. Chim. Sin., 2013, 29(01): 176-182.
[15] HU Si, ZHANG Qing, XIA Zhi, GONG Yan-Jun, XU Jun, DENG Feng, DOU Tao. Catalytic Conversion of Methanol to Propylene over (NH4)2SiF6-Modified Nanosized HZSM-5 Zeolite[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2705-2712.