Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (8): 1615-1620    DOI: 10.3866/PKU.WHXB201505141
PHYSICAL CHEMISTRY OF MATERIALS     
Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes
La-Ga. TONG,Jin-Yan. LIU,Cen-Chen. WANG,Hua. RONG,Wei. LI*()
Download: HTML     PDF(14526KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A novel, high-yielding synthesis of micro/nano ZnO pompons using glutamic acid fluoborate (GluBF4) ionic liquid is reported. The precursor was prepared with zinc acetatedihydrate [Zn(Ac)2·2H2O] and sodium hydroxide (molar ratio = 1:6) as starting materials in an aqueous solution of the GluBF4 ionic liquid at room temperature, which was then heated by microwave to form nano-ZnO powder. The ZnO pompons were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), specific Brunauer-Emmett-Teller (BET) surface area method, and energy dispersive spectrometry (EDS). The product displayed a hexagonal wurtzite structure. The pompon diameter was determined to be 20.4 nm, with a pompon specific surface area of 28.3 m2·g-1. A possible mechanism for the formation of the nano-ZnO pompons is discussed. The ZnO pompons displayed high photocatalytic reactivity and photostability under sunlight. Aqueous solutions of methyl orange (MO) and methyl violet (MV) containing the ZnO pompons were exposed to sunlight and the decolorization rates were determined by monitoring the drop in color intensity. After 5 h, the solutions reached 74.3% and 96.9% degradation, respectively. The total organic carbon (TOC) content decreased as the photodegradation process occurred. The morphology, color, and weight of the ZnO pompons remained unchanged even after being reused five times.



Key wordsAmino acid ionic liquid      Microwave heating      Micro/nano ZnO      Organic contaminant      Photocatalytic degradation     
Received: 03 February 2015      Published: 14 May 2015
MSC2000:  O644  
Fund:  the National Undergraduates Research Training Program, China(URT: 201300078);Breeding Project ofOutstanding Academic Leaders of Beijing Institute of Petro-chemical Technology, China(BIPT-BPOAL-2014)
Corresponding Authors: Wei. LI     E-mail: liwei77@bipt.edu.cn
Cite this article:

La-Ga. TONG,Jin-Yan. LIU,Cen-Chen. WANG,Hua. RONG,Wei. LI. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes. Acta Physico-Chimica Sinca, 2015, 31(8): 1615-1620.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201505141     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I8/1615

Fig 1 Scanning electron microscopy (SEM) images of nano-ZnO pompons at different magnifications
Fig 2 XRD and energy spectrum diagram of ZnO pompons Inset is the energy dispersive spectrum of the nano-ZnO pompons.
Fig 3 SEM image of nano-ZnO needles
Fig 4 Formation of micro/nano ZnO pompons
Fig 5 SEM image of grains at the core and on the surface of pompons
Fig 6 SEM image of half pompon along the vessel wall
Fig 7 Ultraviolet-visible spectrum of nano-ZnO pompons
Fig 8 Ultraviolet-visible spectra of MO (a) and MV (b) with the change of photodegradation time catalyzed by nano-ZnO pompons
Fig 9 Ultraviolet-visible absorption spectra of MO catalyzed by nanoZnO pompons under ultraviolet light
Fig 10 Relationship between the decoloration rate and time when ZnO with different morphologies used to degrade MO or MV solutions
Fig 11 Variation of the TOC content in the dye solutions along with the degradation time
1 Wu J. J. ; Liu S. C. Adv. Mater 2002, 14, 215.
2 Zhu Z. F. ; Yang D. ; Liu H. Adv. Powder Technol 2011, 22, 493.
3 Krishnakunar T. ; Jayaprakash R. ; Pinna N. ; Singh V. N. ; Mehta B. R. ; Phani A. R. Mater. Lett 2009, 63, 242.
4 Zhang L. X. ; Zhao J. H. ; Zheng J. F. ; Li L. ; Zhu Z. P. Appl. Surf. Sci 2011, 258, 711.
5 Hamedani N. F. ; Mahjoub A. R. ; Khodadadi A. A. ; Mortazavi Y. Sensors Actuators B 2011, 156, 737.
6 Li X. Q. ; Fan Q. F. ; Li G. L. ; Huang Y. H. ; Gao Z. ; Fan X. M. ; Zhang C. L. ; Zhou Z. W. Acta Phys. -Chim. Sin 2015, 31 (4), 783.
6 李湘奇; 范庆飞; 李广立; 黄瑶翰; 高照; 范希梅; 张朝良; 周祚万. 物理化学学报, 2015, 31 (4), 783.
7 Du H. Y. ; Wang J. ; Qiao Q. ; Sun Y. H. ; Shao Q. ; Li X. G. Acta Phys. -Chim. Sin 2015, 31 (4), 800.
7 杜海英; 王兢; 乔俏; 孙炎辉; 邵强; 李晓干. 物理化学学报, 2015, 31 (4), 800.
8 Han X. G. ; He H. Z. ; Kuang Q. ; Zhou X. ; Zhang X. H. ; Xu T. ; Xie Z. X. ; Zheng L. S. J. Phys. Chem. C 2009, 113, 584.
9 Huang J. F. ; Xia C. K. ; Cao L.Y. ; Zeng X. R. Mater. Sci. Eng. B 2008, 150, 187.
10 Venkatesha T. G. ; Nayaka Y. A. ; Viswanatha R. ; Vidyasagar C. C. ; Chethana B. K. Powder Technol 2012, 225, 232.
11 Shi R. X. ; Yang P. ; Dong X. B. ; Ma Q. ; Zhang A. Y. Appl. Surf. Sci 2013, 264, 162.
12 Wang W. W. ; Zhu Y. J. Inorg. Chem. Commun 2004, 7, 1003.
13 Hou X. M. ; Zhou F. ; Sun Y. B. ; Liu W. M. Mater. Lett 2007, 61, 1789.
14 Movahedi M. ; Kowsari E. ; Mahjoub A. R. ; Yavari I. Mater. Lett 2008, 62, 3856.
15 Goharshadi E. K. ; Ding Y. L. ; Nancarrow P. J. Phys. Chem. Solids 2008, 69, 2057.
16 Wang L. ; Xu S. Z. ; Li H. J. ; Chang L. X. ; Su Z. ; Zeng M. H. ; Wang L. N. ; Huang Y. N. J. Solid State Chem 2011, 184, 720.
17 Chen C. Y. ; Li Q. ; Nie M. ; Lin H. ; Li Y. ; Wu H. J. ; Wang Y. Y. Mater. Res. Bull 2011, 46, 888.
18 Sanes J. ; Carrion F. J. ; Bermudez M. D. Appl. Surf. Sci 2009, 255, 4859.
19 Lee K. M. ; Chiu W. H. ; Hsu C. Y. ; Cheng H. M. ; Lee C. H. ; Wu C. G. J. J. Power Sources 2012, 216, 330.
20 Min Y. L. ; Zhang K. ; Chen L. H. ; Chen Y. C. ; Zhang Y. G. Diamond & Related Materials 2012, 26, 32.
21 Sabbaghan M. ; Shahvelayati A. S. ; Bashtani S. E. Solid State Sci 2012, 14, 1191.
22 Tong L. ; Liu Y. ; Rong H. ; Gong L. Mater Lett 2013, 112, 5.
23 Rong H. ; Li W. ; Chen Z. Y. ; Wu X. M. J. Phys. Chem. B 2008, 112, 1451.
24 Lu F. ; Chen Y. N. ; Liu N. ; Cao Y. Z. ; Feng L. Chem. J. Chin. Univ 2014, 35 (2), 368.
24 卢飞; 陈雨宁; 刘娜; 曹莹泽; 冯琳. 高等学校化学学报, 2014, 35 (2), 368.
25 Yu D. Z. ; Cai R. X. ; Liu Z. H. Spectrochim. Acta Part A 2004, 60, 1617.
26 Daneshvar N. ; Salari D. ; Khatee A. R. J. Photochem. Photobiol. A 2004, 162 (2/3), 317.
27 Su B. T. ; Hu C. L. ; Zuo X. W. ; Lei Z. Q. Chin. J. Inorg. Chem 2010, 26 (1), 96.
27 苏碧桃; 胡常林; 左显维; 雷自强. 无机化学学报, 2010, 26 (1), 96.
28 Razali R. ; Zak A. K. ; Majid W. H. A. ; Darroudi M. Ceram. Int 2011, 37, 3657.
[1] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.
[2] LIU Fen, ZOU Jian-Wei, HU Gui-Xiang, JIANG Yong-Jun. Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1616-1624.
[3] XING Wei-Nan, NI Liang, YAN Xue-Sheng, LIU Xin-Lin, LUO Ying-Ying, LU Zi-Yang, YAN Yong-Sheng, HUO Peng-Wei. Preparation of C@CdS/Halloysite Nanotube Composite Photocatalyst Using One-Step Pyrolytic Method and Its Photodegradation Properties[J]. Acta Physico-Chimica Sinca, 2014, 30(1): 141-149.
[4] LIN Xue, YU Li-Li, Yan Li-Na, GUAN Qing-Feng, Yan Yong-Sheng, ZHAO Han. Controllable Synthesis and Photocatalytic Activity of Spherical, Flowerlike and Threadlike Bismuth Vanadates[J]. Acta Physico-Chimica Sinca, 2013, 29(08): 1771-1777.
[5] HUANG Hai-Feng, JIA Jian-Ming, LU Han-Feng, ZHANG Hong-Hua, PAN Lie-Qun. Effect of Designed Zr/Ti Molar Ratio on the Photocatalytic Activity of Sr-Zr-Ti Mixed Oxide Catalysts under Visible Light[J]. Acta Physico-Chimica Sinca, 2013, 29(06): 1319-1326.
[6] YANG Han-Pei, ZHANG Ying-Chao, FU Xiao-Fei, SONG Shuang-Shuang, WU Jun-Ming. Surface Modification of CNTs and Improved Photocatalytic Activity of TiO2-CNTs Heterojunction[J]. Acta Physico-Chimica Sinca, 2013, 29(06): 1327-1335.
[7] LIN Xue, GUAN Qing-Feng, LIU Ting-Ting, ZHANG Yao, ZOU Chun-Jie. Controllable Synthesis and Photocatalytic Activity of Bi4Ti3O12 Particles with Different Morphologies[J]. Acta Physico-Chimica Sinca, 2013, 29(02): 411-417.
[8] LIN Xue, Lü Peng, GUAN Qing-Feng, LI Hai-Bo, LI Hong-Ji, CAI Jie, ZOU Yang. Visible Light Photocatalytic Properties of Bi3.25La0.75Ti3O12 Nanowires[J]. Acta Physico-Chimica Sinca, 2012, 28(08): 1978-1984.
[9] LIN Xue, GUAN Qing-Feng, LI Hai-Bo, LI Hong-Ji, BA Chun-Hua, DENG Hai-De. Bi3.25Nd0.75Ti3O12 Nanostructures: Controllable Synthesis and Visible-Light Photocatalytic Activities[J]. Acta Physico-Chimica Sinca, 2012, 28(06): 1481-1488.
[10] YIN Shi-Bin, LUO Lin, JING Sheng-Yu, ZHU Qiang-Qiang, QIANG Ying-Huai. Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2012, 28(01): 85-89.
[11] YANG Zhi-Qiang, MAO Dong-Sen, WU Ren-Chun, YU Jun, WANG Qian. Preparation of CuO-Ce0.6Zr0.4O2 by Microwave Heating Decomposition and Its Catalytic Property for CO Oxidation[J]. Acta Physico-Chimica Sinca, 2011, 27(05): 1163-1168.
[12] CHEN Hua-Rong, CHANG Ran-Ran, LI Li, YUAN Wen-Hui. High Performance NaA Zeolite Membrane for Hydrogen Separation Synthesized on an Organic-Functionalized α-Al2O3 Ceramic Hollow Fiber Surface[J]. Acta Physico-Chimica Sinca, 2011, 27(01): 241-247.
[13] YANG Zhi-Qiang, MAO Dong-Sen, GUO Qiang-Sheng, GU Lei. Effect of Preparation Method on the Activity of CuO/CeO2-ZrO2 Catalysts for Low Temperature CO Oxidation[J]. Acta Physico-Chimica Sinca, 2010, 26(12): 3278-3284.
[14] WU Yang, ZHANG Tian-Tian, YU Ning. Interaction between 1-Ethyl-3-Methyl-Imidazolium Cation and Asparagine Anion[J]. Acta Physico-Chimica Sinca, 2009, 25(08): 1689-1696.
[15] FENG Li-Li, ZHAO Wei, LIU Yang, JIAO Liang, LI Xing-Guo. Photocatalytic Degradation of Rhodamine B by Nanocrystalline TiO2 Loaded into MCM-41 Molecular Sieves[J]. Acta Physico-Chimica Sinca, 2009, 25(07): 1347-1351.