Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (7): 1399-1405    DOI: 10.3866/PKU.WHXB201505191
CATALYSIS AND SURFACE SCIENCE     
Preparation and Characterization of Sr/TiO2 Catalysts with Different Structures and High Photocatalytic Activity under Visible Light
JIANG Xiao-Jia1, JIA Jian-Ming1, LU Han-Feng2, ZHU Qiu-Lian2, HUANG Hai-Feng1
1 College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China;
2 Research Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
Download:   PDF(1517KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Sr/TiO2 catalysts with different Sr/Ti molar ratios (n(Sr)/n(Ti)) were synthesized by fractional precipitation. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrometry, and ultraviolet-visible diffuse reflectance spectrophotometry (UV-Vis RDS). The photocatalytic activity of the samples under visible light was determined using the photocatalytic degradation of methylene blue. The photocatalytic activities and structures of the catalysts changed with n(Sr)/n(Ti) molar ratio. When n(Sr)/n(Ti)≤3/2, the catalysts, which were composed of TiO2 and SrTiO3, showed a globular structure. When n(Sr)/n(Ti) was between 3/2 and 4/1, the catalysts had a flaky structure. As the n(Sr)/n(Ti) increased, the composition of the catalysts changed from SrTiO3 and Sr24 to Sr24 and Sr(OH)2·H2O. When the n(Sr)/n(Ti) ratio was 9/1, the catalyst mainly consisted of Sr(OH)2 ·H2O and exhibited an acicular structure. The sample with n(Sr)/n(Ti)=4/1 exhibited the highest photocatalytic activity; its first-order reaction rate constant was 5.0 times as high as that of the perovskite catalyst SrTiO3 and 86.7 times as high as that of the commercial Ti photocatalyst P25.



Key wordsSr/Ti molar ratio      Different structure      Photocatalysis      Methylene blue      Visible light     
Received: 24 March 2015      Published: 19 May 2015
MSC2000:  O644  
Fund:  

The project was supported by the National Natural Science Foundation of China (21107096).

Corresponding Authors: HUANG Hai-Feng     E-mail: hhf66@zjut.edu.cn
Cite this article:

JIANG Xiao-Jia, JIA Jian-Ming, LU Han-Feng, ZHU Qiu-Lian, HUANG Hai-Feng. Preparation and Characterization of Sr/TiO2 Catalysts with Different Structures and High Photocatalytic Activity under Visible Light. Acta Phys. Chim. Sin., 2015, 31(7): 1399-1405.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201505191     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2015/V31/I7/1399

(1) Hu, P.; Hou, D.; Shi, H.; Chen, C.; Huang, Y.; Hu, X. Applied Surface Science 2014, 319, 244. doi: 10.1016/j.apsusc.2014.07.141
(2) Leong, K. H.; Gan, B. L.; Ibrahim, S.; Saravanan, P. Applied Surface Science 2014, 319, 128. doi: 10.1016/j.apsusc.2014.06.153
(3) Dong, F.; Xiong, T.; Sun, Y.; Zhao, Z.; Zhou, Y.; Feng, X.; Wu, Z. Chemical Communications 2014, 50, 10386. doi: 10.1039/C4CC02724H
(4) Dong, F.; Li, Q.; Sun, Y.; Ho, W. ACS Catalysis 2014, 4, 4341. doi: 10.1021/cs501038q
(5) Xiong, T.; Huang, H.; Sun, Y.; Dong, F. Journal of Materials Chemistry A 2015, 3, 6118. doi: 10.1039/C5TA00103J
(6) Dong, F.; Wang, Z.; Li, Y.; Ho, W.; Lee, S. C. Environmental Science & Technology 2014, 48, 10345. doi: 10.1021/es502290f
(7) Huang, X.; Chen, H. Applied Surface Science 2013, 284, 843. doi: 10.1016/j.apsusc.2013.08.019
(8) Wang, Y.; Li, J.; Peng, P.; Lu, T.; Wang, L. Applied Surface Science 2008, 254, 5276. doi: 10.1016/j.apsusc.2008.02.050
(9) Kurokawa, H.; Yang, L.; Jacobson, C. P.; De Jonghe, L. C.; Visco, S. J. Journal of Power Sources 2007, 164, 510. doi: 10.1016/j.jpowsour.2006.11.048
(10) Kuwata, N.; Sata, N.; Saito, S.; Tsurui, T.; Yugami, H. Solid State Ionics 2006, 177, 2347. doi: 10.1016/j.ssi.2006.05.043
(11) Xie, J.; Ji, T. H.; Ouyang, X. H.; Mao, Z. Y.; Shi, H. J. Solid State Communications 2008, 147, 226. doi: 10.1016/j.ssc.2008.05.026
(12) Ge, W.W.; Zhu, C. H.; An, H. P.; Li, Z. Z.; Tang, G. D.; Hou, D. L. Ceramics International 2014, 40, 1569. doi: 10.1016/j.ceramint.2013.07.044
(13) Jing, L.; Xin, B.; Yuan, F.; Xue, L.; Wang, B.; Fu, H. The Journal of Physical Chemistry B 2006, 110, 17860. doi: 10.1021/jp063148z
(14) Sulaeman, U.; Yin, S.; Sato, T. Effect of Sr/Ti Ratio on the Photocatalytic Properties of SrTiO3. In Materials Science and Engineering, 3rd International Congress on Ceramics, Osaka, Japan, Nov 14-18, 2010; IOP Science: England, 2011.
(15) Xu, J.; Wei, Y.; Huang, Y.; Wang, J.; Zheng, X.; Sun, Z.; Fan, L.; Wu, J. Ceramics International 2014, 40, 10583. doi: 10.1016/j.ceramint.2014.03.037
(16) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. The Journal of Physical Chemistry B 2004, 108, 8992. doi: 10.1021/jp049556p
(17) Wang, C.; Qiu, H.; Inoue, T.; Yao, Q. International Journal of Hydrogen Energy 2014, 39, 12507. doi: 10.1016/j.ijhydene.2014.06.059
(18) Sulaeman, U.; Yin, S.; Sato, T. Applied Physics Letters 2010, 97, 103102. doi: 10.1063/1.3486466
(19) Ohno, T.; Tsubota, T.; Nakamura, Y.; Sayama, K. Applied Catalysis A: General 2005, 288, 74. doi: 10.1016/j.apcata.2005.04.035
(20) Yang, G. R.; Yan, W.; Wang, J. N.; Zhang, Q.; Yang, H. H. Journal of Sol-Gel Science and Technology 2014, 71, 159. doi: 10.1007/s10971-014-3346-0
(21) Jiao, Z. B.; Chen, T.; Yu, H. C.; Wang, T.; Lu, G. X.; Bi, Y. P. Journal of Colloid and Interface Science 2014, 419, 95. doi: 10.1016/j.jcis.2013.12.056
(22) Lu, P.W. Fundamentals of Inorganic Materials Science;Wuhan University of Technology Press:Wuhan, 2006. [陆佩文. 无机材料科学基础. 武汉: 武汉理工大学出版社, 2006.]
(23) Chen, J. Z. Modern Crystal Chemistry; Science Press: Beijing, 2010. [陈敬中. 现代晶体化学. 北京: 科学出版社, 2010.]
(24) Feng, X. L.; Wang, G. Y. Journal of Changchun University of Science and Technology (Natural Science Edition) 2005, 28, 76. [冯秀丽, 王公应. 长春理工大学学报(自然科学版), 2005, 28, 76.]
(25) Gao, Y. F.; Masuda, Y.; Yonezawa, T.; Koumoto, K. Chemistry of Materials 2002, 14, 5006. doi: 10.1021/cm020358p
(26) Huang, S. T.; Lee, W.W.; Chang, J. L.; Huang, W. S.; Chou, S. Y.; Chen, C. C. Journal of the Taiwan Institute of Chemical Engineers 2014, 45, 1927. doi: 10.1016/j.jtice.2014.02.003
(27) Yuvaraj, S.; Lin, F. Y.; Chang, T. H.; Yeh, C. T. Journal of Physical Chemistry B 2003, 107, 1044. doi: 10.1021/jp026961c
(28) Cai, S.; Xu, Y. D.; Cai, S.; Li, X. S.; Huang, J. S.; Guo, X. X. Chinese Journal of Catalysis 1996, 17, 22. [余林, 徐奕德, 蔡晟, 李新生, 黄家生, 郭燮贤. 催化学报, 1996, 17, 22.]
(29) Yu, C.; Fan, C.; Yu, J. C.; Zhou, W.; Yang, K. Materials Research Bulletin 2011, 46, 140. doi: 10.1016/j.materresbull.2010.08.013
(30) Tennakone, K.; Ileperuma, O. A.; Bandara, J. M. S.; Kiridena, W. C. B. Semiconductor Science and Technology 1992, 7, 423
(31) Yang, L. B.; Jing, L. Q.; Li, S. D.; Jiang, B. J.; Fu, W.; Fu, H. G. Chemical Journal of Chinese Universities 2007, 28, 415. [杨立滨, 井立强, 李姝丹, 蒋保江, 付薇, 付宏刚. 高等学校化学学报, 2007, 28, 415.]
(32) Xu, Y. L. Fundamentals of Oxide and Compound Semiconductor; Xidian University Press: Xian, 1991. [徐毓龙. 氧化物与化合物半导体基础. 西安: 西安电子科技大学出版社, 1991.]
(33) Lee, K. H.; Ishizaki, A.; Kim, S.W.; Ohta, H.; Koumoto, K. Journal of Applied Physics 2007, 102, 033702.

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[6] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[7] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[8] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[9] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[10] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[11] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[12] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[13] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[14] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[15] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.