Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (8): 1489-1498    DOI: 10.3866/PKU.WHXB201506011
THEORETICALAND COMPUTATIONAL CHEMISTRY     
Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene
Meng-Yao. ZHAO,Xue-Ping. YANG,Xiao-Ning. YANG*()
Download: HTML     PDF(21538KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene has potential applications in many fields. In particular, two-dimensional graphene nanochannels assembled from graphene sheets can be used for filtration and separation. In this work, molecular dynamics simulations were performed to investigate the microscopic structural and dynamical properties of water molecules confined in pristine and hydroxyl-modified graphene slit pores with widths of 0.6-1.5 nm. The simulation results indicate that water molecules have layered structure distributions within the graphene nanoscale channels. The special ordered ring structure can be formed for water confined in the subnanometer pores (0.6-0.8 nm). Graphene surfaces are able to induce distinctive molecular interfacial orientations of water molecules. In the graphene slits, the diffusion of water molecules was slower than that in bulk water, and the hydroxyl-modified graphene pores could lead to more reduced water diffusion ability. For the hydroxyl-modified graphene pores, water molecules spontaneously permeated into the 0.6 nm slit pore. According to the simulation results, the dynamic behavior of confined water is associated with the ordered water structures confined within the graphene-based nanochannels. These simulation results will be helpful in understanding the penetration mechanism of water molecules through graphene nanochannels, and will provide a guide for designing graphene-based membrane structures.



Key wordsMolecular simulation      Graphene      Water      Confined structure     
Received: 26 November 2014      Published: 01 June 2015
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21376116)
Corresponding Authors: Xiao-Ning. YANG     E-mail: Yangxia@njut.edu.cn
Cite this article:

Meng-Yao. ZHAO,Xue-Ping. YANG,Xiao-Ning. YANG. Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene. Acta Physico-Chimica Sinca, 2015, 31(8): 1489-1498.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201506011     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I8/1489

Fig 1 Configuration of the simulation system (a) the pristine graphene slits; (b) the hydroxyl modified graphene slits; (c) the hydroxyl arrangement on the graphene surface; H: slit pore width
Pair interaction εii/(J · mol-1) σii/nm q/e
Cg―Cg 233.2 0.34 0.00
Ch―Ch 233.2 0.34 +0.265
Oh―Oh 711.8 0.307 -0.700
Hh―Hh 0.000 0.00 +0.435
Ow―Ow 650.2 0.3166 -0.8476
Hw―Hw 0.00 0.00 +0.4238
Cg: carbon atom in the pristine graphene, Ch: carbon atom connected with hydroxyl group in modified graphene, Oh: oxygen atom in hydroxyl group, Hh: hydrogen atom in hydroxyl group, Ow: oxygen atom in water, Hw: hydrogen atom in water
Table 1 Force field parameters used in the simulation
Fig 2 Changes of number of water molecules over time inside slit pores (a) the pristine graphene slit pores; (b) the hydroxyl modified graphene slit pores
Fig 3 Density profiles along the z-axis and the configurations inside the slit pores for confined water molecules (a) the density profile for the pristine graphene slit pores; (b) the density profile for the hydroxyl modified graphene slit pores; (c) the configuration of confined water inside the pristine graphene slit pores with width of 0.7 nm; (d-f) the configurations of confined water inside the hydroxyl modified graphene slit pores with widths of 0.6, 0.7, 0.8 nm, respectively.
Fig 4 Lateral radial distribution function (gO-O(r)) for the water molecules adjacent to the graphene wall in different slit pores (a) the pristine graphene slit pores; (b) the hydroxyl modified graphene slit pores
Fig 5 Orientation angle (φ, ψ) distributions of confined water molecules (a, b) the pristine graphene slit pores; (c, d) the hydroxyl modified graphene slit pores
Fig 6 (a, b) Mean square displacement of xy plane (MSDxy ) for several typical water molecules in different confinement environments and bulk phase; (c, d) trajectories of the confined water molecules along the z-axis (a, c) the pristine graphene slit pores; (b, d) the hydroxyl modified graphene slit pores
Fig 7 (a, b) Average number of hydrogen bond profiles along the z axis for water inside slit pores; (c, d) the intermittent time correlation function (CHB(t)) for the H2O-H2O hydrogen bond numbers inside the nanochannnel as well as bulk water (a, c) the pristine graphene slit pores; (b, d) the hydroxyl modified graphene slit pores
1 Pan Y. S. ; Birkedal H. ; Pattison P. ; Brown D. ; Chapuis G. J. Phys. Chem. B 2004, 108 (20), 6458.
2 Newsome D. A. ; Sholl D. S. J. Phys. Chem. B 2005, 109 (15), 7239.
3 Milischuk A. A. ; Ladanyi B. M. J. Chem. Phys 2011, 135 (17), 174709.
4 Qiao, Y.; Xu, X.; Li, H. Appl. Phys. Lett. 2013, 103 (23), 233106. doi: 10.1063/1.4839255
5 Han S. ; Choi M. Y. ; Kumar P. ; Stanley H. E. Nat. Phys 2010, 6 (9), 685.
6 Du F. ; Qu L. T. ; Xia Z. H. ; Feng L. F. ; Dai L. M. Langmuir 2011, 27 (13), 8437.
7 Strauss I. ; Chan H. ; Král P. J. Am. Chem. Soc 2014, 136 (4), 1170.
8 Cicero, G.; Grossman, J. C.; Schwegler, E.; Gygi, F.; Galli, G. J. Am. Chem. Soc. 2008, 130 (6), 1871. doi: 10.1021/ja074418+
9 Thomas J. A. ; McGaughey A. J. H. Nano Lett 2008, 8 (9), 2788.
10 Mashl R. J. ; Joseph S. ; Aluru N. R. ; Jakobsson E. Nano Lett 2003, 3 (5), 589.
11 Liu Y. C. ; Wang Q. ; Lü L. H. ; Zhang L. Z. Acta Phys. -Chim. Sin 2005, 21 (1), 63.
11 刘迎春; 王琦; 吕玲红; 章连众. 物理化学学报, 2005, 21 (1), 63.
12 Iiyama T. ; Nishikawa K. ; Otowa T. ; Kaneko K. J. Phys. Chem 1995, 99 (25), 10075.
13 Koga K. ; Gao G. T. ; Tanaka H. ; Zeng X. C. Nature 2001, 412 (6849), 802.
14 Stoller M. D. ; Park S. ; Zhu Y. W. ; An J. H. ; Ruoff R. S. Nano Lett 2008, 8 (10), 3498.
15 Chandra V. ; Park J. ; Chun Y. ; Lee J. W. ; Hwang I. C. ; Kim K. S. ACS Nano 2010, 4 (7), 3979.
16 Zhang H. ; Lv X. J. ; Li Y. M. ; Wang Y. ; Li J. H. ACS Nano 2010, 4 (1), 380.
17 Cohen-Tanugi D. ; Grossman J. C. Nano Lett 2012, 12 (7), 3602.
18 胡耀娟,金娟,张卉,吴萍,蔡称心.物理化学学报, 2010, 26 (8), 2073. doi: 10.3866/PKU.WHXB20100812
18 Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073.
19 Chen H. Q. ; Müeller M. B. ; Gilmore K. J. ; Wallace G. G. ; Li D. Adv. Mater 2008, 20 (18), 3557.
20 Li D. ; Mueller M. B. ; Gilje S. ; Kaner R. B. ; Wallace G. G. Nat. Nanotechnol 2008, 3 (2), 101.
21 Han Y. ; Xu Z. ; Gao C. Adv. Funct. Mater 2013, 23 (29), 3693.
22 Mi B. X. Science 2014, 343 (6172), 740.
23 Joshi R. K. ; Carbone P. ; Wang F. C. ; Kravets V. G. ; Su Y. ; Grigorieva I. V. ; Wu H. A. ; Geim A. K. ; Nair R. R. Science 2014, 343 (6172), 752.
24 Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Science 2012, 335 (6067), 442. doi: 10.1126/science.1211694
25 Sun P. Z. ; Zhu M. ; Wang K. L. ; Zhong M. L. ; Wei J. Q. ; Wu D. H. ; Xu Z. P. ; Zhu H. W. ACS Nano 2013, 7 (1), 428.
26 Sun P. Z. ; Zheng F. ; Zhu M. ; Song Z. G. ; Wang K. L. ; Zhong M. L. ; Wu D. H. ; Little R. B. ; Xu Z. P. ; Zhu H. W. ACS Nano 2014, 8 (1), 850.
27 Hu M. ; Mi B. X. Environ. Sci. Technol 2013, 47 (8), 3715.
28 Xu L. ; Hu Y. Z. ; Ma T. B. ; Wang H. Nanotechnology 2013, 24 (50), 505504.
29 Kolesnikov A. I. ; Zanotti J. M. ; Loong C. K. ; Thiyagarajan P. ; Moravsky A. P. ; Loutfy R. O. ; Burnham C. J. Phys. Rev. Lett 2004, 93 (3), 035503.
30 Fernández-Serra M. V. ; Artacho E. Phys. Rev. Lett 2006, 96 (1), 016404.
31 Gao W. X. ; Wang H. L. ; Li S. M. Acta Phys. -Chim. Sin 2014, 30 (9), 1625.
31 高文秀; 王洪磊; 李慎敏. 物理化学学报, 2014, 30 (9), 1625.
32 Xiong, W.; Liu, J. Z.; Ma, M.; Xu, Z. P.; Sheridan, J.; Zheng, Q. S. Phys. Rev. E 2011, 84 (5), 056329. doi: 10.1103/PhysRevE.84.056329
33 Falk K. ; Sedlmeier F. ; Joly L. ; Netz R. R. ; Bocquet L. Nano Lett 2010, 10 (10), 4067.
34 Mosaddeghi H. ; Alavi S. ; Kowsari M. H. ; Najafi B. J. Chem. Phys 2012, 137 (18), 184703.
35 Kumar P. ; Buldyrev S. V. ; Starr F. W. ; Giovambattista N. ; Stanley H. E. Phys. Rev. E 2005, 72 (5), 051503.
36 Hirunsit P. ; Balbuena P. B. J. Phys. Chem. C 2007, 111 (4), 1709.
37 Warner J. H. ; Mukai M. ; Kirkland A. I. ACS Nano 2012, 6 (6), 5680.
38 Argyris D. ; Tummala N. R. ; Striolo A. ; Cole D. R. J. Phys. Chem. C 2008, 112 (35), 13587.
39 Liu L. ; Zhang L. ; Sun Z. G. ; Xi G. Nanoscale 2012, 4 (20), 6279.
40 Mark P. ; Nilsson L. J. Phys. Chem. A 2001, 105 (43), 9954.
41 Cheng A. ; Steele W. A. J. Chem. Phys 1990, 92 (6), 3858.
42 Wei N. ; Lv C. J. ; Xu Z. P. Langmuir 2014, 30 (12), 3572.
43 Janeček J. ; Netz R. R. Langmuir 2007, 23 (16), 8417.
44 Cornell W. D. ; Cieplak P. ; Bayly C. I. ; Gould I. R. ; Merz K. M. ; Ferguson D. M. ; Spellmeyer D. C. ; Fox T. ; Caldwell J. W. ; Kollman P. A. J. Am. Chem. Soc 1995, 117 (19), 5179.
45 Gotzias A. ; Tylianakis E. ; Froudakis G. ; Steriotis T. Microporous Mesoporous Mat 2012, 154, 38.
46 Zhu, Y. D.; Guo, X. J.; Shao, Q.; Wei, M. J.; Wu, X. M.; Lu, L. H.; Lu, X. H. Fluid Phase Equilibr. 2010, 297 (2), 215. doi: 10.1016/j.fluid.2010.05.005
47 Eun C. S. ; Berkowitz M. L. J. Phys. Chem. B 2010, 114 (42), 13410.
48 Lum, K.; Chandler, D.; Weeks, J. D. J. Phys. Chem. B 1999, 103 (22), 4570. doi: 10.1021/jp984327m
49 Ren X. P. ; Zhou B. ; Wang C. L. J. Chem. Phys 2012, 137 (2), 024703.
50 Boukhvalov D. W. ; Katsnelson M. I. ; Son Y. W. Nano Lett 2013, 13 (8), 3930.
51 Deshmukh S. A. ; Kamath G. ; Baker G. A. ; Sumant A. V. ; Sankaranarayanan S. K. R. S. Surf. Sci 2013, 609, 129.
52 Wei N. ; Peng X. S. ; Xu Z. P. ACS Appl. Mater. Inter 2014, 6 (8), 5877.
53 Pertsin A. ; Grunze M. J. Phys. Chem. B 2004, 108 (4), 1357.
54 Hub J. S. ; Winkler F. K. ; Merrick M. ; de Groot B. L. D. J. Am. Chem. Soc 2010, 132 (38), 13251.
55 Zang J. ; Konduri S. ; Nair S. ; Sholl D. S. ACS Nano 2009, 3 (6), 1548.
56 Luzar A. ; Chandler D. Nature 1996, 379 (6560), 55.
57 Striolo A. Nano Lett 2006, 6 (4), 633.
58 Martí J. ; Sala J. ; Guàrdia E. J. Mol. Liq 2010, 153 (1), 72.
59 Jorgensen W. L. ; Chandrasekhar J. ; Madura J. D. ; Impey R. W. ; Klein M. L. J. Chem. Phys 1983, 79 (2), 926.
[1] Walter POLKOSNIK,Lou MASSA. Kohn-Sham Density Matrix and the Kernel Energy Method[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 656-661.
[2] Wentao LI,Jiale YONG,Qing YANG,Feng CHEN,Yao FANG,Xun HOU. Oil-Water Separation Based on the Materials with Special Wettability[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 456-475.
[3] Mojtaba ALIPOUR. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 407-413.
[4] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[5] Peng CUI,Hai LIU,Xue-Min YU,Qing XIA,Qing-Song LI. Measurement and Correlation of Liquid-Liquid Equilibrium Data for the Water+Cyclohexanone+Methyl Isobutyl Ketone Ternary System[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 65-72.
[6] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[7] Xiang-Feng HUANG,Wan-Qi LIU,Yong-Jiao XIONG,Kai-Ming PENG,Jia LIU,Li-Jun LU. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 49-64.
[8] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[9] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[10] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[11] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[12] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[13] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[14] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.
[15] Ai-Jing LI,Wei XIE,Ming WANG,Si-Chuan XU. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 927-940.