Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (8): 1521-1526    DOI: 10.3866/PKU.WHXB201506081
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries
Xue-Mei. SUN,Li-Jun. GAO()
Download: HTML     PDF(5102KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Diamond-shaped carbon-coated CoCO3 (CoCO3/C) particles were prepared by a simple hydrothermal method, and carbon coating was realized using glucose as the carbon source. This study focuses on the electrochemical performance of CoCO3/C as an anode material. Its surface morphology and crystal lattice structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The content and structure of the carbon coating layer were further investigated by the thermogravimetry-differential thermal analysis (TG-DTA) technique and Raman spectroscopy. The pore size distribution was characterized using the Barrett-Joyner-Halenda (BJH) method. The results show that the carbon coating process creates not only a layer of amorphous carbon on the surface of CoCO3, but also a porous structure with pore size of ~30 nm. The amorphous carbon layer enhances the structural stability during the charging and discharging process, and the porous structure facilitates the movement of ions in the electrolyte, and thus improves its electrochemical performance. When the cycling performance was tested for 500 cycles, this CoCO3/C material maintained a capacity of 539 mAh•g-1 at 0.90C (1.00C = mAh•g-1), showing its excellent cycling capacity. When the current rate was increased to 3.00C, the capacity was 130 mAh•g-1. When the current rate was returned to 0.15C, its capacity was 770 mAh•g-1, demonstrating the great rate performance and stability of CoCO3/C.



Key wordsCoCO3      Li-ion battery      Carbon coating      Electrochemical performance      Anode material     
Received: 12 December 2014      Published: 08 June 2015
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(U1401248)
Cite this article:

Xue-Mei. SUN,Li-Jun. GAO. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries. Acta Physico-Chimica Sinca, 2015, 31(8): 1521-1526.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201506081     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I8/1521

Fig 1 (a) XRD patterns of CoCO3 and CoCO3/C; (b) BJH plots of CoCO3/C and CoCO3; (c) Raman spectrum of CoCO3/C (the inset showing the Raman spectrum of pristine CoCO3); (d) thermogravimetric-differential thermal analysis (TG-DTA) curves of CoCO3/C
Fig 2 SEM images of (a) CoCO3 and (b) CoCO3/C; (c) TEM and (d) high resolution TEM images of CoCO3/C
Fig 3 (a) Cyclic voltammograms of CoCO3/C at a scan rate of 0.01 mV•s-1 at a voltage range of 0.01-3.00 V; (b) the first three charge and discharge curves of CoCO3/C at 0.09C rate; (c) cycling performance and coulombic efficiency of CoCO3/C and CoCO3 at 0.90C rate; (d) cycling performance of CoCO3/C at various discharge rates
Fig 4 Electrochemical impedance spectroscopy (EIS) Nyquist plots of CoCO3/C and CoCO3
1 Ding P. ; Xu Y. L. ; Sun X. F. Acta Phys. -Chim. Sin 2013, 29 (2), 293.
1 丁朋; 徐友龙; 孙孝飞. 物理化学学报, 2013, 29 (2), 293.
2 陈仕玉,王兆翔,房向鹏,赵海雷,刘效疆,陈立泉.物理化学学报, 2011, 27 (1), 97. doi: 10.3866/PKU.WHXB20110134
2 Chen, S. Y.; Wang, Z. X.; Fang, X. P.; Zhao, H. L.; Liu, X. J.; Chen, L. Q. Acta Phys. -Chim. Sin. 2011, 27 (1), 97.
3 He P. ; Yu H. J. ; Li D. ; Zhou H. S. J.Mater. Chem 2012, 22, 3680.
4 Broussely, M.; Archdale, G. J. Power Sources 2004, 136 (2), 386. doi: 10.1016/j.jpowsour.2004.03.031
5 Vu A. ; Qian Y. Q. ; Stein A. Adv. Energy Mater 2012, 2 (9), 1056.
6 Shi S. Q. ; Zhang H. ; Ke X. Z. ; Ouyang C. Y. ; Lei M. S. ; Chen L. Q. Phys. Lett. A 2009, 373 (44), 4096.
7 Ouyang C. Y. ; Du Y. L. ; Shi S. Q. ; Lei M. S. Phys. Lett. A 2009, 373 (31), 2796.
8 Xu, J. B.; Gao, P.; Zhao, T. S. Energy Environ. Sci. 2012, 5, 5333. doi: 10.1039/C1EE01431E
9 Yang W. C. ; Bi Y. J. ; Yang B. C. ; Wang D. Y. ; Shi S. Q. Acta Phys. -Chim. Sin 2014, 30 (3), 460.
9 杨文超; 毕玉敬; 杨邦成; 王德宇; 施思齐. 物理化学学报, 2014, 30 (3), 460.
10 Li C. C. ; Yin X. M. ; Wang T. H. ; Zeng H. C. Chem. Mater 2009, 21 (20), 4984.
11 Luo Y. ; Luo J. ; Zhou W. ; Qi X. ; Zhang H. ; Yu D. Y. W. ; Li C. M. ; Fan H. J. ; Yu T. J. Mater. Chem. A 2013, 1, 273.
12 Wang B. ; Zhu T. ; Wu H. B. ; Xu R. ; Chen J. S. ; Lou X. W. Nanoscale 2012, 4, 2145.
13 Ren Z. X. ; Liu T. ; Sun L. N. ; Zhang P. X. ; Liu J. H. ; Zhang Q. L. Acta Phys. -Chim. Sin 2014, 31 (3), 1641.
13 任祥忠; 刘涛; 孙灵娜; 张培新; 刘剑洪; 张黔玲. 物理化学学报, 2014, 31 (3), 1641.
14 Xiong Q. Q. ; Xia X. H. ; Tu J. P. ; Chen J. ; Zhang Y. Q. ; Zhou D. ; Gu C. D. ; Wang X. L. J. J. Power Sources 2013, 240, 344.
15 Aragón M. J. ; Pérez-Vicente C. ; Tirado J. L. Electrochem. Commumn 2007, 9 (7), 1744.
16 Mirhashemihaghighi S. ; León B. ; Vicente P. C. ; Tirado J. L. ; Stoyanova R. ; Yoncheva M. ; Zhecheva E. ; Puche R. S. ; Arroyo E. M. ; Romero de Paz J. Inorg. Chem 2012, 51 (10), 5554.
17 Su, L. W.; Zhou, Z.; Qin, X.; Tang, Q. W.; Wu, D. H.; Shen P. W. Nano Energy 2013, 2 (2), 276. doi: 10.1016/j. nanoen.2012.09.012
18 Ding, Z. J.; Yao, B.; Feng, J. K.; Zhang, J. X. J. Mater. Chem. A 20131, 11200. doi: 10.1039/c3ta12227a
19 Eshkenazi V. ; Peled E. ; Burstein L. ; Golodnitsky D. Solid State Ionics 2004, 170 (1-2), 83.
20 Wu X. L. ; Jiang L. Y. ; Cao F. F. ; Guo Y. G. ; Wan L. J. Adv. Mater 2009, 21 (25-26), 2710.
21 Wang G. X. ; Liu H. ; Liu J. ; Qiao S. Z. ; Lu G. Q. M. ; Munroe P. ; Ahn H. J. Adv. Mater 2010, 22 (44), 4944.
22 Belharouak I. ; Johnson C. ; Amine K. Electrochem. Commum 2005, 7 (10), 983.
23 Zhao S. Q. ; Yu Y. ; Wei S. S. ; Wang Y. X. ; Zhao C. H. ; Liu R. ; Shen Q. J.Power Sources 2014, 253, 251.
24 Su, L. W.; Zhou, Z.; Shen, P. W. Electrochim. Acta 2013, 87, 180. doi: 10.1016/j.electacta.2012.09.003
25 Ang W. A. ; Gupta N. ; Prasanth R. ; Madhavi S. ACS Appl. Mater. Interfaces 2012, 4 (12), 7011.
26 Laruelle S. ; Grugeon S. ; Poizot P. ; Dollé M. ; Dupont L. ; Tarascon J. M. Electrochem. Soc 2002, 149 (5), A627.
27 Liu J. Z. ; Ni J. F. ; Zhao Y. ; Wang H. B. ; Gao L. J. J. Mater. Chem. A 2013, 1, 12879.
28 Ma R. G. ; He L. F. ; Lu Z. G. ; Yang S. L. ; Xi L. J. ; Chung J. C. CrystEngComm 2012, 14, 7882.
29 Kang Y. M. ; Song M. S. ; Kim J. H. ; Kim H. S. ; Park M. S. ; Lee J. Y. ; Liu H. K. ; Dou S. X. Electrochim. Acta 2005, 50 (18), 3667.
30 Ponrouch A. ; Taberna P. L. ; Simon P. ; Palaćın M. R. Electrochim. Acta 2012, 61, 13.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 581-597.
[2] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[3] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[4] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[6] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[7] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.
[8] Jia-Jun HUANG,Zhi-Jun DONG,Xu ZHANG,Guan-Ming YUAN,Ye CONG,Zheng-Wei CUI,Xuan-Ke LI. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1699-1707.
[9] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1593-1603.
[10] Li-Li CAI,Yue-Hua WEN,Jie CHENG,Gao-Ping CAO,Yu-Sheng YANG. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 969-974.
[11] Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 717-722.
[12] Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 573-580.
[13] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2737-2744.
[14] Cheng-Cheng CHEN,Ning ZHANG,Yong-Chang LIU,Yi-Jing WANG,Jun CHEN. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 349-355.
[15] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1527-1534.