Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (8): 1513-1520    DOI: 10.3866/PKU.WHXB201506082
ELECTROCHEMISTRY AND NEW ENERGY     
Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries
Xiao-Fei. SUN1,2,*(),You-Long. XU1,2,Xiao-Yu. ZHENG1,2,Xiang-Fei. MENG1,2,Peng. DING1,2,3,Hang. REN1,2,Long. LI1,2
1 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
2 International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, P. R. China
3 Staff Room of Power, Wuhan Ordnance Non-Commissioned Officer Academy, Wuhan 430075, P. R. China
Download: HTML     PDF(10740KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Li3V2(PO4)3 and its triple-cation-doped counterpart Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1 were prepared by a conventional sol-gel method. The effect of Na-Al-F co-doping on the physicochemical properties, especially the electrochemical performance of Li3V2(PO4)3, were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), Raman spectroscopy, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It was found that combined with surface coating from residual carbon, this triple-cation co-doping stabilizes the crystalline structure of Li3V2(PO4)3, suppresses secondary particle agglomeration, and improves the electric conductivity. Moreover, reversible deinsertion/insertion of the third lithium ion at deeper charge/discharge is enabled by such doping. As a consequence, the practical electrochemical performance of Li3V2(PO4)3 is significantly improved. The specific capacity of the doped material at a low rate of 1/9C is 172 mAh·g-1 and it maintains 115 mAh·g-1 at a rate of 14C, while the specific capacities of the undoped sample at 1/9C and 6C are only 141 and 98 mAh·g-1, respectively. After 300 cycles at 1C rate, the doped material has a capacity of 118 mAh·g-1, which is 32.6% higher than that of the undoped counterpart. It is also noteworthy that the multiplateau discharge curve of Li3V2(PO4)3 transforms to a slope-like curve, indicating the possibility of a different lithium intercalation mechanism after this co-doping.



Key wordsLithium vanadium phosphate      Doping      Sol-gel      Cathode material      Lithiumion battery      E nergy storage     
Received: 03 February 2015      Published: 08 June 2015
MSC2000:  O646  
Fund:  the Natural Science Foundation of China(21343011);Natural Science Foundation of Shaanxi Province, China(2014JQ2-2007);111 Project(B14040);Fundamental Research Funds for the Central Universities of China(xjj2014044)
Corresponding Authors: Xiao-Fei. SUN     E-mail: xfsunxjtu@mail.xjtu.edu.cn
Cite this article:

Xiao-Fei. SUN,You-Long. XU,Xiao-Yu. ZHENG,Xiang-Fei. MENG,Peng. DING,Hang. REN,Long. LI. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries. Acta Physico-Chimica Sinca, 2015, 31(8): 1513-1520.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201506082     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I8/1513

Fig 1 XRD patterns with Rietveld refinement of p-LVP (a) and d-LVP (b) p-LVP and d-LVP represent pristine-Li3V2(PO4)3 and doped-Li3V2(PO4)3, respectively.
  p-LVP d-LVP
Refinement agreements Rp = 2.98%, Rwp = 3.86%, RBragg = 1.59% Rp = 3.48%, Rwp = 5.34%, RBragg = 2.38%
Lattice parameters a = 0.86038(2) nm, b = 0.85934(6) nm, c = 1.47351(3) nm;
α = 90°, β = 125.185(2)°, γ = 90°;
V = 0.89041(4) nm3, V/Z = 0.22260(3) nm3
a = 0.85838(1) nm, b = 0.85860(6) nm, c = 1.47104(5) nm;
α = 90°, β = 125.228(8)°, γ = 90°;
V = 0.88561(5) nm3, V/Z = 0.22140(4) nm3
Rp, Rwp, and RBragg indicate the fit error, while V is the lattice volume and Z is the general multiplicity.
Table 1 Refinement agreements and lattice parameters of p-LVP and d-LVP
Fig 2 Micro-region Raman spectra of d-LVP
Fig 3 HRTEM image (a) and EELS spectrum (b) of d-LVP
Fig 4 SEM images of p-LVP (a) and d-LVP (b)
Fig 5 EDS spectrum on the selected area of d-LVP
Fig 6 The first charge/discharge curves of p-LVP and d-LVP at 1/9C rate
Fig 7 Comparison on the CV curves of p-LVP (a) and d-LVP (b)
Fig 8 Comparison on the rate capability of p-LVP and d-LVP
Fig 9 Cycling performance of p-LVP and d-LVP at 1C rate
Fig 10 Measured and fitted EIS of p-LVP (a) and d-LVP (b)
Fig 11 Equivalent electric circuit for EIS simulation Rs represents the resistance of Li+ and electrons passing through the electrolyte, separator and externals; Csei and Rsei are the capacitance and resistance of the solid electrolyte interphase (SEI) layer, respectively; CPE(Q) and Rct are the charge transfer capacitance and resistance, respectively; and Zw is the Warburg impedance associated with Li+ diffusion in the active materials (p-LVP or d-LVP).
1 Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
2 Liu C. ; Li F. ; Ma L. P. ; Cheng H. M. Advanced Materials 2010, 22, E28.
3 Whittingham M. S. Proceedings of the IEEE 2012, 100, 1518.
4 Goodenough, J. B.; Kim, Y. Chemistry of Materials 2010, 22, 587. doi: 10.1021/cm901452z
5 Cabana J. ; Monconduit L. ; Larcher D. ; Palacín M. R. Advanced Materials 2010, 22, E170.
6 Liu Y. H. ; Xu Y. L. ; Sun X. F. New Chemical Materials 2014, 42, 1.
6 刘养浩; 徐友龙; 孙孝飞. 化工新型材料, 2014, 42, 1.
7 Sun X. F. ; Xu Y. L. ; Liu Y. H. ; Li L. Acta Phys. -Chim. Sin. 2012, 28, 2885.
7 孙孝飞; 徐友龙; 刘养浩; 李璐. 物理化学学报, 2012, 28, 2885.
8 Manthiram, A. The Journal of Physical Chemistry Letters 2011, 2, 176. doi: 10.1021/jz1015422
9 Masquelier C. ; Croguennec L. Chemical Reviews 2013, 113, 6552.
10 Lee S. ; Park S. S. The Journal of Physical Chemistry C 2012, 116, 25190.
11 Fei L. ; Lu W. ; Sun L. ; Wang J. ; Wei J. ; Chan H. L. W. ; Wang Y. RSC Advances 2013, 3, 1297.
12 Hautier G. ; Jain A. ; Ong S. P. ; Kang B. ; Moore C. ; Doe R. ; Ceder G. Chemistry of Materials 2011, 23, 3495.
13 Lu Y. ; Wang L. ; Song J. ; Zhang D. ; Xu M. ; Goodenough J. B. Journal of Materials Chemistry A 2013, 1, 68.
14 Yin S. C. ; Grondey H. ; Strobel P. ; Anne M. ; Nazar L. F. J.Am. Chem. Soc. 2013, 125, 10402.
15 Morcrette M. ; Leriche J. B. ; Patoux S. ; Wurm C. ; Masquelier C. Electrochem. Solid State Lett. 2003, 6, A80.
16 Yang C. C. ; Kung S. H. ; Lin S. J. ; Chien W. C. Journal of Power Sources 2014, 251, 296.
17 Su, J.; Wu, X. L.; Lee, J. S.; Kim, J.; Guo, Y. G. Journal of Materials Chemistry A 2013, 1, 2508. doi: 10.1039/c2ta01254e
18 唐艳,钟艳君,欧庆祝,刘恒,钟本和,郭孝东,王辛龙.物理化学学报, 2015, 31, 277. doi: 10.3866/PKU.WHXB201412172
18 Tang, Y.; Zhong, Y. J.; Ou, Q. Z.; Liu, H.; Zhong, B. H.; Guo, X. D.; Wang, X. L. Acta Phys. -Chim. Sin. 2015, 31, 277.
19 Zhang S. ; Wu Q. ; Deng C. ; Liu F. L. ; Zhang M. ; Meng F. L. ; Gao H. Journal of Power Sources 2012, 218, 56.
20 Bini M. ; Ferrari S. ; Capsoni D. ; Massarotti V. Electrochimica Acta 2011, 56, 2648.
21 Liu H. ; Bi S. ; Wen G. ; Teng X. ; Gao P. ; Ni Z. ; Zhu Y. ; Zhang F. Journal of Alloys and Compounds 2012, 543, 99.
22 Yan J. ; Yuan W. ; Tang Z. Y. ; Xie H. ; Mao W. F. ; Ma L. Journal of Power Sources 2012, 209, 251.
23 Pivko M. ; Arcon I. ; Bele M. ; Dominko R. ; Gaberscek M. Journal of Power Sources 2012, 216, 145.
24 Gao, C.; Liu, H.; Liu, G.; Zhang, J.; Wang, W. Materials Science and Engineering B 2013, 178, 272. doi: 10.1016/j.mseb.2012.11.016
25 Wang J. ; Wang Z. ; Li X. ; Guo H. ; Wu X. ; Zhang X. ; Xiao W. Electrochimica Acta 2013, 87, 224.
26 Duan W. ; Hu Z. ; Zhang K. ; Cheng F. ; Tao Z. ; Chen J. Nanoscale 2013, 5, 6485.
27 Zheng J. C. ; Li X. H. ; Wang Z. X. ; Li J. H. ; Wu L. ; Li L. J. ; Guo H. J. Acta Phys. -Chim. Sin. 2009, 25, 1916.
27 郑俊超; 李新海; 王志兴; 李金辉; 伍凌; 李灵均; 郭华军. 物理化学学报, 2009, 25, 1916.
28 Kuang Q. ; Zhao Y. Journal of Power Sources 2012, 216, 33.
29 Yang S. T. ; Zhao N. H. ; Dong H. Y. ; Yang J. X. ; Hue H. Y. Electrochimica Acta 2005, 51, 166.
30 Yuan W. ; Yan J. ; Tang Z. ; Sha O. ; Wang J. ; Mao W. ; Ma L. Electrochimica Acta 2012, 72, 138.
31 Sun X. ; Xu Y. ; Ding P. ; Chen G. ; Zheng X. Mater. Lett. 2013, 113, 186.
32 Sun, X.; Xu, Y.; Wang, J. J. Solid State Electrochem. 2012, 16, 1781. doi: 10.1007/s10008-011-1619-x
33 Sato M. ; Ohkawa H. ; Yoshida K. ; Saito M. ; Uematsu K. ; Toda K. Solid State Ion. 2000, 135, 137.
34 Sun X. ; Xu Y. ; Ding P. ; Chen G. ; Zheng X. ; Zhang R. ; Li L. Journal of Power Sources 2014, 255, 163.
35 Sun X. ; Xu Y. ; Jia M. ; Ding P. ; Liu Y. ; Chen K. Journal of Materials Chemistry A 2013, 1, 2501.
36 Tang Y. ; Wang C. ; Zhou J. ; Bi Y. ; Liu Y. ; Wang D. ; Shi S. ; Li G. Journal of Power Sources 2013, 227, 199.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 581-597.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[3] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[4] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[5] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1781-1788.
[6] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[7] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1297-1309.
[8] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[9] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[10] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 573-581.
[11] Tao JING,Ying DAI. Development of Solid Solution Photocatalytic Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 295-304.
[12] Xiao-Ru ZHANG,Yue-Feng XU,Shou-Yu SHEN,Yuan CHEN,Ling HUANG,Jun-Tao LI,Shi-Gang SUN. Reduced Graphene Oxide-LaFeO3 Composite Nanomaterials as Bifunctional Catalyst for Rechargeable Lithium-Oxygen Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2237-2244.
[13] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[14] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2287-2292.
[15] Lei XING,Li-Ying JIAO. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2133-2145.