Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (8): 1527-1534    DOI: 10.3866/PKU.WHXB201506151
ELECTROCHEMISTRY AND NEW ENERGY     
Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery
Xia-Xing. SHI1,Shi-Xuan. LIAO1,Bing. YUAN1,Yan-Jun. ZHONG1,Ben-He. ZHONG1,Heng. LIU2,Xiao-Dong. GUO1()
1 College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
2 College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
Download: HTML     PDF(13747KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The cuboid layered 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 cobalt-free lithium-rich solid-solution cathode material was synthesized by a facile quick co-precipitation method. The prepared material was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP) spectroscopy, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. It was found that the as-prepared material has a typical hexagonal α-NaFeO2 layered structure with R·\overline 3 $ m space group, and the chemical composition of this material is similar to the corresponding target material. SEM and TEM images reveal that the cuboid structures are assembled from nanoparticles with particle sizes of 40-200 nm. A possible formation mechanism of this cuboid aggregation is proposed. The electrochemical tests (in the voltage range 2.0-4.8 V vs Li/Li+) indicate that the as-prepared material exhibits excellent rate capability. It delivers approximately 243 and 143 mAh·g-1 corresponding to 0.1C and 10C, respectively. Moreover, the asprepared material has good cycling stability even after high rate measurement, delivering a high capacity retention of 90.7% after 72 cycles at 0.5C. This co-precipitation approach, which has facile operation processes and good results, is a economic technique that could facilitate the application of Li-rich cathode on a large scale.



Key wordsCathode material      Facile quick co-precipitation      Cuboid structure      Electrochemical performance      Li-ion battery     
Received: 22 April 2015      Published: 15 June 2015
MSC2000:  O646  
Fund:  the Science and Technology Pillar Program of Sichuan University, China(2014GZ0077);Research Fund for theDoctoral Program of Higher Education, China(20120181120103)
Cite this article:

Xia-Xing. SHI,Shi-Xuan. LIAO,Bing. YUAN,Yan-Jun. ZHONG,Ben-He. ZHONG,Heng. LIU,Xiao-Dong. GUO. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery. Acta Physico-Chimica Sinca, 2015, 31(8): 1527-1534.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201506151     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I8/1527

Fig 1 XRD pattern for the sample
Fig 2 XPS spectr of the sample
Fig 3 SEM images of (a) precipitation, (b) precursor calcined at 400 ℃, (c) as-prepared sample synthesized with oxalate, and (d) the sample synthesized without adding oxalate
 
Fig 4 (a) TEM image of the sample, (b) a magnified image of a single nanoparticles and (c) HR-TEM image
Fig 5 Cyclic performance of the samples synthesized with oxalate and without oxalate at different rates
Fig 6 Discharge curves (a) and the corresponding dQ/dV curves (b) under differentC-rate for 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 electrode; (c) charge-discharge curves of 1st, 2nd, 3rd, and 198th; (d) cyclic voltammograms profiles
1 Cheng F. ; Xin Y. ; Chen J. ; Lu L. ; Zhang X. ; Zhou H. J.Mater. Chem. A 2013, 1, 5301.
2 Tabuchi M. ; Nabeshima Y. ; Takeuchi T. ; Kageyama H. ; Imaizumi J. ; Shibuya H. ; Akimoto J. J.Power Sources 2013, 221, 427.
3 Xue Q. R. ; Li J. L. ; Xu G. F. ; Hou P. F. ; Yan G. ; Dai Y. ; Wang X. D. ; Gao F. Acta Phys. -Chim. Sin. 2014, 30, 1667.
3 薛庆瑞; 李建玲; 徐国峰; 侯朋飞; 晏刚; 代宇; 王新东; 高飞. 物理化学学报, 2014, 30, 1667.
4 Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Adv. Mater. 2010, 22, 4364. doi: 10.1002/adma.v22:39
5 Cho T. H. ; Shiosaki Y. ; Noguchi H. J.Power Sources 2006, 159, 1322.
6 Lei C. H. ; Bareño J. ; Wen J. G. ; Petrov I. ; Kang S. H. ; Abraham D. P. J.Power Sources 2008, 178, 422.
7 Johnson C. S. ; Li N. ; Lefief C. ; Thackeray M. M. Electrochem. Commun. 2007, 9, 787.
8 Kim, S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M.; Hackney, S. A.; Yoon, W.; Grey, C. P. Chem. Mater. 2004, 16, 1996. doi: 10.1021/cm0306461
9 Lin J. ; Mu D. ; Jin Y. ; Wu B. ; Ma Y. ; Wu F. J.Power Sources 2013, 230, 76.
10 Shojan J. ; Chitturi V. R. ; Torres L. ; Singh G. ; Katiyar R. S. Mater. Lett. 2013, 104, 57.
11 Liu G. B. ; Liu H. ; Shi Y. F. Electrochim. Acta 2013, 88, 112.
12 Wu F. ; Lu H. ; Su Y. ; Li N. ; Bao L. ; Chen S. J.Appl. Electrochem. 2010, 40, 783.
13 Zhu Z. ; Zhu L. J.Power Sources 2014, 256, 178.
14 Xue Q. R. ; Li J. L. ; Xu G. F. ; Zhou H. W. ; Wang X. D. ; Kang F. Y. J.Mater. Chem. A 2014, 2, 18613.
15 Zhang X. ; Cheng F. ; Zhang K. ; Liang Y. ; Yang S. ; Liang J. ; Chen J. RSC Adv. 2012, 2, 5669.
16 Fu F. ; Deng Y. P. ; Shen C. H. ; Xu G. L. ; Peng X. X. ; Wang Q. ; Xu Y. F. ; Fang J. C. ; Huang L. ; Sun S. G. Electrochem. Commun. 2014, 44, 54.
17 Zhang, L.; Borong, W.; Ning, L.; Feng, W. Electrochim. Acta 2014, 118, 67. doi: 10.1016/j.electacta.2013.11.186
18 Jiang, Y.; Yang, Z.; Luo, W.; Hu, X.; Huang, Y. Phys. Chem. Chem. Phys. 2013, 15, 2954. doi: 10.1039/c2cp44394e
19 Kim D. ; Gim J. ; Lim J. ; Park S. ; Kim J. Mater. Res. Bull. 2010, 45, 252.
20 Kim J. H. ; Choi S. H. ; Son M. Y. ; Kim M. H. ; Lee J. K. ; Kang Y. C. Ceram. Int. 2013, 39, 331.
21 Wang Z. Y. ; Li B. ; Ma J. ; Xia D. G. RSC Adv. 2014, 4, 15825.
22 Wu F. ; Wang Z. ; Su Y. ; Guan Y. ; Jin Y. ; Yan N. ; Tian J. ; Bao L. ; Chen S. J.Power Sources 2014, 267, 337.
23 Ryu J. H. ; Park B. G. ; Kim S. B. ; Park Y. J. J.Appl. Electrochem. 2009, 39, 1059.
24 Kim, G. Y.; Yi, S. B.; Park, Y. J.; Kim, H. G. Mater. Res. Bull. 2008, 43, 3543. doi: 10.1016/j.materresbull.2008.01.011
25 Yu C. ; Li G. ; Guan X. ; Zheng J. ; Li L. ; Chen T. Electrochim. Acta 2012, 81, 283.
26 Li L. ; Zhang X. ; Chen R. ; Zhao T. ; Lu J. ; Wu F. ; Amine K. J.Power Sources 2014, 249, 28.
27 Sathiya M. ; Rousse G. ; Ramesha K. ; Laisa C. ; Vezin H. ; Sougrati M. T. ; Doublet M. L. ; Foix D. ; Gonbeau D. ; Walker W. Nat. Mater. 2013, 12, 827.
28 Liao S. X. ; Zhong B. H. ; Guo X. ; Shi X. X. ; Hua W. B. Eur. J. Inorg. Chem. 2013, 2013, 5436.
29 Zhang L. ; Wu B. ; Li N. ; Mu D. ; Zhang C. ; Wu F. J.Power Sources 2013, 240, 644.
30 Gu M. ; Belharouak I. ; Zheng J. ; Wu H. ; Xiao J. ; Genc A. ; Amine K. ; Thevuthasan S. ; Baer D. R. ; Zhang J. G. ACS Nano 2012, 7, 760.
31 Chen L. ; Chen S. ; Hu D. Z. ; Su Y. F. ; Li W. K. ; Wang Z. ; Bao L. Y. ; Wu F. Acta Phys. -Chim. Sin. 2014, 30, 467.
31 陈来; 陈实; 胡道中; 苏岳峰; 李维康; 王昭; 包丽颖; 吴峰. 物理化学学报, 2014, 30, 467.
32 Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Li, L. ACS Appl. Mater. Interfaces 2014, 6, 10330. doi: 10.1021/am5017649
33 Wang Y. ; Yan X. ; Bie X. ; Fu Q. ; Du F. ; Chen G. ; Wang C. ; Wei Y. Electrochim. Acta 2014, 116, 250.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[3] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[5] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[6] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[7] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.
[8] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2287-2292.
[9] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1999-2006.
[10] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1866-1879.
[11] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1593-1603.
[12] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1489-1494.
[13] Zu-Guang YANG,Wei-Bo HUA,Jun ZHANG,Jiu-Hua CHEN,Feng-Rong HE,Ben-He ZHONG,Xiao-Dong GUO. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1056-1061.
[14] Li-Li CAI,Yue-Hua WEN,Jie CHENG,Gao-Ping CAO,Yu-Sheng YANG. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 969-974.
[15] Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 717-722.