Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (8): 1437-1451    DOI: 10.3866/PKU.WHXB201506162
REVIEW     
TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries
Qian-Wen. WANG1,Xian-Feng. DU1,2,*(),Xi-Zi. CHEN1,You-Long. XU1,2
1 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
2 International Center of Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, P. R. China
Download: HTML     PDF(15955KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, TiO2 has been widely investigated as a promising anode material for lithium ion batteries because of its low volume change during the charge/discharge process, environmental benignity, and high safety. However, it suffers from poor electron transport, slow ion diffusion, and low theoretical capacity (335 mAh·g-1), which limit its practical application. In this paper, we review the development history and latest progress of TiO2 nanotubes (TNTs) as anode materials. Three typical synthesis methods of TNTs, namely, hydrothermal method, anodic oxidation, and template method, are analyzed in detail. We explain the formation mechanism, compare the advantages and disadvantages of each method, and identify the factors influencing the formation of TNTs. We also carefully analyze the morphology and crystallography of TNTs and describe how they influence the electrochemical performance. It is pointed out that c-axis oriented, arrayed, unsealed TNTs with a wall thickness less than 5 nm show better electrochemical performance. Various approaches for improving the electrochemical performance of TNTs are summarized, including preparation of threedimensional (3D) structured electrodes, doping, coating, and synthesis of composites. Among these approaches, compositing with materials that have high capacity and high conductivity has proven to be effective, convenient, and controllable. The achievements and the problems associated with each approach are summarized, and the possible research directions and prospects of TNTs as anode materials for Li-ion batteries in the future are discussed.



Key wordsTiO2 nanotube      Anode material      Electrochemical performance      Lithium ion battery     
Received: 20 April 2015      Published: 16 June 2015
MSC2000:  O646  
Fund:  the Natural Science Foundation of Shaanxi Province, China(2014JM6231);Scientific Research Foundation for theReturned Overseas Chinese Scholars, State Education Ministry, and Fundamental Research Funds for the Central Universities, China(XJJ2012076)
Corresponding Authors: Xian-Feng. DU     E-mail: xianfengdu@mail.xjtu.edu.cn
Cite this article:

Qian-Wen. WANG,Xian-Feng. DU,Xi-Zi. CHEN,You-Long. XU. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries. Acta Physico-Chimica Sinca, 2015, 31(8): 1437-1451.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201506162     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I8/1437

Fig 1 Transmission electron microscopy(TEM) images of TNTs prepared by hydrothermal reaction (a), 11 scanning election microscopy (SEM) images of TNTs prepared by electrochemical anodization (c), 12 and template method against polymeric nanotubes (b)13
Synthesis method External diameter/nm Length/μm Wall thickness/nm Influencing factor Advantage Disadvantage
hydrothermal synthesis 5-20 0.1-500 1-12 (1) size and crystalline structure of the precursor(2) hydrothermal temperature and duration(3) concentration of alkali simple route to obtain nanotube morphology for large scale production (1) highly concentrated NaOH must be added(2) difficult in achieving uniform size(3) thermal unstable
anodic oxidation 20-150 0.1-500 - (1) composition and concentration of the electrolyte(2) applied voltage(3) duration of reaction (1) facile fabrication process(2) binder-free the utilization of highly toxic solvent such as HF
template method 50-430 0.05-200 3-50 morphology of the templatecontrolled scale of nanotubes via different templates (1) complicated fabrication process(2) tube morphology may be destroyed during fabrication process
Table 1 Comparison of three typical synthesis methods of TNTs
Fig 2 Schematic illustration of TNTs (a) andomly oriented TiO2 nanotubes, (b) directly grown sealed TiO2 nanotube arrays, (c) unsealed TiO2 nanotubes arrays on the current collector70
Fig 3 Schematics of the TNTs grown on the surface of Ti foam (a), 82 Ti mesh (b), 83 and C nanofiber (c)84
Fig 4 TEM image of TiO2 hollow microspheres with the shell consisting of nanotubes85
Fig 5 Voltage versus capacity curves of assembled half-cells by using bare TiO2 (A), as-synthesized Co3O4/TiO2-1 (Co3O4 loading: 0.12 mg ·cm-2) (B), and Co3O4/TiO2-2 (Co3O4 loading: 0.25 mg ·cm-2) (C) electrodes as anodes in (a) the 1st cycle, and (b) the 10th cycles119
Fig 6 Illustrations of the TiO2 nanotubes/graphene composite (b) is an enlarged zone from (a), showing the facilitated electron transport through graphene and ion diffusion in the tubular TiO2.128
1 Scrosati B. Nature 1995, 373 (6515), 557.
2 Tarascon J. M. ; Armand M. Nature 2001, 414 (6861), 359.
3 Bavykin D. V. ; Friedrich J. M. ; Walsh F. C. Adv. Mater 2006, 18 (21), 2807.
4 Ortiz G. F. ; Hanzu I. ; Djenizian T. ; Lavela P. ; Tirado J. L. ; Knauth P. Chem. Mater 2009, 21 (1), 63.
5 Djenizian T. ; Hanzu I. ; Knauth P. J. Mater. Chem 2011, 21 (27), 9925.
6 Arico A. S. ; Bruce P. ; Scrosati B. ; Tarascon J. M. ; Van Schalkwijk W. Nat. Mater 2005, 4 (5), 366.
7 Armstrong A. R. ; Armstrong G. ; Canales J. ; Garcia R. ; Bruce P. G. Adv. Mater 2005, 17 (7), 862.
8 Gentili V. ; Brutti S. ; Hardwick L. J. ; Armstrong A. R. ; Panero S. ; Bruce P. G. Chem. Mater 2012, 24 (22), 4468.
9 Kasuga T. ; Hiramatsu M. ; Hoson A. ; Sekino T. ; Niihara K. Langmuir 1998, 14 (12), 3160.
10 Chen Q. ; Du G. H. ; Zhang S. ; Peng L. M. Acta Crystallographica Section B-Structural Science 2002, 58, 587.
11 Huang J. P. ; Yuan D. D. ; Zhang H. Z. ; Cao Y. L. ; Li G. R. ; Yang H. X. ; Gao X. P. RSC Advances 2013, 3 (31), 12593.
12 Kim H. S. ; Yu S. H. ; Sung Y. E. ; Kang S. H. J. Alloy. Compd 2014, 597, 275.
13 Xu X. ; Fan Z. ; Ding S. ; Yu D. ; Du Y. Nanoscale 2014, 6 (10), 5245.
14 Bavykin D. V. ; Parmon V. N. ; Lapkin A. A. ; Walsh F. C. J. Mater. Chem 2004, 14 (22), 3370.
15 Kasuga T. ; Hiramatsu M. ; Hoson A. ; Sekino T. ; Niihara K. Adv. Mater 1999, 11 (15), 1307.
16 Choi M. G. ; Lee Y. G. ; Song S. W. ; Kim K. M. Electrochim. Acta 2010, 55 (20), 5975.
17 Gajovic A. ; Friscic I. ; Plodinec M. ; Ivekovic D. J. Mol. Struct 2009, 924-926, 183.
18 Morgan D. L. ; Triani G. ; Blackford M. G. ; Raftery N. A. ; Frost R. L. ; Waclawik E. R. J. Mater. Sci 2011, 46 (2), 548.
19 Zhang Q. H. ; Gao L. ; Zheng S. ; Sun J. Acta Chim. Sin 2002, 60 (8), 1439.
19 张青红; 高濂; 郑珊; 孙静. 化学学报, 2002, 60 (8), 1439.
20 Seo H. K. ; Kim G. S. ; Ansari S. G. ; Kim Y. S. ; Shin H. S. ; Shim K. H. ; Suh E. K. Sol. Energy Mater. Sol. Cells 2008, 92 (11), 1533.
21 Suzuki Y. ; Pavasupree S. ; Yoshikawa S. ; Kawahata R. J. Mater. Res 2005, 20 (4), 1063.
22 Ma R. Z. ; Fukuda K. ; Sasaki T. ; Osada M. ; Bando Y. J.Phys. Chem. B 2005, 109 (13), 6210.
23 Yuan Z. Y. ; Su B. L. Colloids and Surfaces A-Physicochemical and Engineering Aspects 2004, 241 (1-3), 173.
24 Sun X. M. ; Li Y. D. Chemistry-A European Journal 2003, 9 (10), 2229.
25 Ma R. Z. ; Bando Y. ; Sasaki T. Chem. Phys. Lett 2003, 380 (5-6), 577.
26 Tsai C. C. ; Nian J. N. ; Teng H. S. Appl. Surf. Sci 2006, 253 (4), 1898.
27 Du G. H. ; Chen Q. ; Che R. C. ; Yuan Z. Y. ; Peng L. M. Appl. Phys. Lett 2001, 79 (22), 3702.
28 Wang W. Z. ; Varghese O. K. ; Paulose M. ; Grimes C. A. ; Wang Q. L. ; Dickey E. C. J. Mater. Res 2004, 19 (2), 417.
29 Yao B. D. ; Chan Y. F. ; Zhang X. Y. ; Zhang W. F. ; Yang Z. Y. ; Wang N. Appl. Phys. Lett 2003, 82 (2), 281.
30 Menzel R. ; Peiro A. M. ; Durrant J. R. ; Shaffer M. S. P. Chem. Mater 2006, 18 (25), 6059.
31 Morgado E. ; de Abreu M. A. S. ; Pravia O. R. C. ; Marinkovic B. A. ; Jardim P. M. ; Rizzo F. C. ; Araujo A. S. Solid State Sci 2006, 8 (8), 888.
32 Kukovecz A. ; Hodos N. ; Horvath E. ; Radnoczi G. ; Konya Z. ; Kiricsi I. J.Phys. Chem. B 2005, 109 (38), 17781.
33 Nosheen S. ; Galasso F. S. ; Suib S. L. Langmuir 2009, 25 (13), 7623.
34 Yang J. J. ; Jin Z. S. ; Wang X. D. ; Li W. ; Zhang J. W. ; Zhang S. L. ; Guo X. Y. ; Zhang Z. J. Dalton Trans 2003, No. 20, 3898.
35 Gao T. ; Fjellvag H. ; Norby P. Inorg. Chem 2009, 48 (4), 1423.
36 Liu N. ; Chen X. ; Zhang J. ; Schwank J. W. Catal. Today 2014, 225 (0), 34.
37 Lai Y. K. ; Sun L. ; Zun J. ; Lin C. J. Acta Phys. -Chim. Sin 2004, 20, 1063.
37 赖跃坤; 孙岚; 左娟; 林昌健. 物理化学学报, 2004, 20, 1063.
38 Macak J. M. ; Tsuchiya H. ; Taveira L. ; Aldabergerova S. ; Schmuki P. Angew. Chem. Int. Edit 2005, 44 (45), 7463.
39 Pervez S. ; Kim D. ; Doh C. H. ; Farooq U. ; Yaqub A. ; Choi J. H. ; Lee Y. J. ; Saleem M. Mater. Lett 2014, 137, 347.
40 John S. E. ; Mohapatra S. K. ; Misra M. Langmuir 2009, 25 (14), 8240.
41 Li H. ; Martha S. K. ; Unocic R. R. ; Luo H. ; Dai S. ; Qu J. J.Power Sources 2012, 218, 88.
42 Lakshmi B. B. ; Dorhout P. K. ; Martin C. R. Chem. Mater 1997, 9 (3), 857.
43 Sudant G. ; Baudrin E. ; Larcher D. ; Tarascon J. M. J.Mater. Chem 2005, 15 (12), 1263.
44 Kavan L. ; Grätzel M. ; Gilbert S. E. ; Klemenz C. ; Scheel H. J. J.Am. Chem. Soc 1996, 118 (28), 6716.
45 Exnar I. ; Kavan L. ; Huang S. Y. ; Grätzel M. J. Power Sources 1997, 68 (2), 720.
46 Lindstrom H. ; Sodergren S. ; Solbrand A. ; Rensmo H. ; Hjelm J. ; Hagfeldt A. ; Lindquist S. E. J.Phys. Chem. B 1997, 101 (39), 7717.
47 Borghols W. J. H. ; Lutzenkirchen-Hecht D. ; Haake U. ; van Eck E. R. H. ; Mulder F. M. ; Wagemaker M. Phys. Chem. Chem. Phys 2009, 11 (27), 5742.
48 Lafont U. ; Carta D. ; Mountjoy G. ; Chadwick A. V. ; Kelder E. M. J.Phys. Chem. C 2010, 114 (2), 1372.
49 Wagemaker M. ; Kentgens A. P. M. ; Mulder F. M. Nature 2002, 418 (6896), 397.
50 Wagemaker M. ; Borghols W. J. H. ; van Eck E. R. H. ; Kentgens A. P. M. ; Kearley G. L. ; Mulder F. M. Chemistry-A European Journal 2007, 13 (7), 2023.
51 Macklin W. J. ; Neat R. J. Solid State Ionics 1992, 53, 694.
52 Hu Y. S. ; Kienle L. ; Guo Y. G. ; Maier J. Adv. Mater 2006, 18 (11), 1421.
53 Reddy M. A. ; Kishore M. S. ; Pralong V. ; Caignaert V. ; Varadaraju U. V. ; Raveau B. Electrochem. Commun 2006, 8 (8), 1299.
54 Marinaro M. ; Pfanzelt M. ; Kubiak P. ; Marassi R. ; Wohlfahrt-Mehrens M. J.Power Sources 2011, 196 (22), 9825.
55 Zukalova M. ; Kalbac M. ; Kavan L. ; Exnar I. ; Gräetzel M. Chem. Mater 2005, 17 (5), 1248.
56 Ryu W. H. ; Nam D. H. ; Ko Y. S. ; Kim R. H. ; Kwon H. S. Electrochim. Acta 2012, 61, 19.
57 Fang H. T. ; Liu M. ; Wang D. W. ; Sun T. ; Guan D. S. ; Li F. ; Zhou J. G. ; Sham T. K. ; Cheng H. M. Nanotechnology 2009, 20 (22), 266.
58 Kim J. ; Cho J. J. Electrochem. Soc 2007, 154 (6), A542.
59 Koudriachova M. V. ; Harrison N. M. ; de Leeuw S. W. Phys. Rev. Lett 2001, 86 (7), 1275.
60 Yang H. G. ; Sun C. H. ; Qiao S. Z. ; Zou J. ; Liu G. ; Smith S. C. ; Cheng H. M. ; Lu G. Q. Nature 2008, 453 (7195), 638.
61 Chen J. S. ; Tan Y. L. ; Li C. M. ; Cheah Y. L. ; Luan D. Y. ; Madhavi S. ; Boey F. Y. C. ; Archer L. A. ; Lou X. W. J. Am. Chem. Soc 2010, 132 (17), 6124.
62 Pan D. ; Huang H. ; Wang X. ; Wang L. ; Liao H. ; Li Z. ; Wu M. Journal of Materials Chemistry A 2014, 2 (29), 11454.
63 Yan J. Y. ; Song H. H. ; Yang S. B. ; Chen X. H. Mater. Chem. Phys 2009, 118 (2-3), 367.
64 Albu S. P. ; Ghicov A. ; Aldabergenova S. ; Drechsel P. ; LeClere D. ; Thompson G. E. ; Macak J. M. ; Schmuki P. Adv. Mater 2008, 20 (21), 4135.
65 Lamberti A. ; Garino N. ; Sacco A. ; Bianco S. ; Manfredi D. ; Gerbaldi C. Electrochim. Acta 2013, 102 (0), 233.
66 Lamberti A. ; Garino N. ; Sacco A. ; Bianco S. ; Chiodoni A. ; Gerbaldi C. Electrochim. Acta 2015, 151, 222.
67 Guan D. S. ; Cai C. A. ; Wang Y. J. Nanosci. Nanotechnol 2011, 11 (4), 3641.
68 Panda S. K. ; Yoon Y. ; Jung H. S. ; Yoon W. S. ; Shin H. J. Power Sources 2012, 204, 162.
69 Gonzalez J. R. ; Alcantara R. ; Nacimiento F. ; Ortiz G. F. ; Tirado J. L. ; Zhecheva E. ; Stoyanova R. J.Phys. Chem. C 2012, 116 (38), 20182.
70 Freitas R. G. ; Justo S. G. ; Pereira E. C. J.Power Sources 2013, 243, 569.
71 Han H. ; Song T. ; Lee E. K. ; Devadoss A. ; Jeon Y. ; Ha J. ; Chung Y. C. ; Choi Y. M. ; Jung Y. G. ; Paik U. ACS Nano 2012, 6 (9), 8308.
72 Beguin F. ; Chevallier F. ; Vix C. ; Saadallah S. ; Rouzaud J. N. ; Frackowiak E. J.Phys. Chem. Solids 2004, 65 (2-3), 211.
73 Li H. ; Shi L. H. ; Lu W. ; Huang X. J. ; Chen L. Q. J.Electrochem. Soc 2001, 148 (8), A915.
74 Aurbach D. ; Weissman I. ; Zaban A. ; Dan P. Electrochim. Acta 1999, 45 (7), 1135.
75 Aurbach D. Electrochim. Acta 1999, 45 (1-2), 1.
76 Verma P. ; Maire P. ; Novak P. Electrochim. Acta 2010, 55 (22), 6332.
77 Kawamura T. ; Okada S. ; Yamaki J. J.Power Sources 2006, 156 (2), 547.
78 Brutti S. ; Gentili V. ; Menard H. ; Scrosati B. ; Bruce P. G. Adv. Energy Mater 2012, 2 (3), 322.
79 Morterra C. Journal of the Chemical Society-Faraday Transactions 1988, 84, 1617.
80 Li C. ; Zhang H. P. ; Fu L. J. ; Liu H. ; Wu Y. P. ; Ram E. ; Holze R. ; Wu H. Q. Electrochim. Acta 2006, 51 (19), 3872.
81 Kim M. G. ; Kim H. ; Cho J. J.Electrochem. Soc 2010, 157 (7), A802.
82 Bi Z. ; Paranthaman M. P. ; Menchhofer P. A. ; Dehoff R. R. ; Bridges C. A. ; Chi M. ; Guo B. ; Sun X. G. ; Dai S. J. Power Sources 2013, 222, 461.
83 Zhang Z. J. ; Zeng Q. Y. ; Chou S. L. ; Li X. J. ; Li H. J. ; Ozawa K. ; Liu H. K. ; Wang J. Z. Electrochim. Acta 2014, 133, 570.
84 Zhao B. ; Jiang S. ; Su C. ; Cai R. ; Ran R. ; Tade M. O. ; Shao Z. Journal of Materials Chemistry A 2013, 1 (39), 12310.
85 Chen J. ; Yang L. ; Tang Y. J.Power Sources 2010, 195 (19), 6893.
86 Song T. ; Han H. ; Choi H. ; Lee J. W. ; Park H. ; Lee S. ; Park W. I. ; Kim S. ; Liu L. ; Paik U. Nano Research 2014, 7 (4), 491.
87 Lu X. ; Wang G. ; Zhai T. ; Yu M. ; Gan J. ; Tong Y. ; Li Y. Nano Lett 2012, 12 (3), 1690.
88 Wu H. ; Xu C. ; Xu J. ; Lu L. ; Fan Z. ; Chen X. ; Song Y. ; Li D. Nanotechnology 2013, 24 (45)
89 Salari M. ; Konstantinov K. ; Liu H. K. J.Mater. Chem 2011, 21 (13), 5128.
90 Guo W. ; Xue X. ; Wang S. ; Lin C. ; Wang Z. L. Nano Lett 2012, 12 (5), 2520.
91 Li Z. ; Ding Y. ; Kang W. ; Li C. ; Lin D. ; Wang X. ; Chen Z. ; Wu M. ; Pan D. Electrochim. Acta 2015, 161, 40.
92 Hoang S. ; Berglund S. P. ; Hahn N. T. ; Bard A. J. ; Mullins C. B. J.Am. Chem. Soc 2012, 134 (8), 3659.
93 Zhang J. ; Zhang J. ; Ren H. ; Yu L. ; Wu Z. ; Zhang Z. J.Alloy. Compd 2014, 609, 178.
94 Li Y. ; Wang Z. ; Lv X. J.Journal of Materials Chemistry A 2014, 2 (37), 15473.
95 Xu J. ; Wang Y. ; Li Z. ; Zhang W. J. Power Sources 2008, 175 (2), 903.
96 Kyeremateng N. A. ; Vacandio F. ; Sougrati M. T. ; Martinez H. ; Jumas J. C. ; Knauth P. ; Djenizian T. J.Power Sources 2013, 224, 269.
97 Pfanzelt M. ; Kubiak P. ; Fleischhammer M. ; Wohlfahrt-Mehrens M. J.Power Sources 2011, 196 (16), 6815.
98 Fan J. ; Zhao Z. ; Wang J. ; Zhu L. Appl. Surf. Sci 2015, 324 (0), 691.
99 Cheng Z. W. ; Feng L. ; Chen J. M. ; Yu J. M. ; Jiang Y. F. J.Hazard. Mater 2013, 254, 354.
100 Liu H. J. ; Liu G. G. ; Zhou Q. X. ; Xie G. H. ; Hou Z. H. ; Zhang M. L. ; He Z. W. Microporous Mesoporous Mat 2011, 142 (2-3), 439.
101 Fan X. ; Wan J. ; Liu E. ; Sun L. ; Hu Y. ; Li H. ; Hu X. ; Fan J. Ceram. Int 2015, 41 (3, Part B), 5107.
102 Fan X. ; Fan J. ; Hu X. ; Liu E. ; Kang L. ; Tang C. ; Ma Y. ; Wu H. ; Li Y. Ceram. Int 2014, 40 (10), 15907.
103 Li Y. ; Wang Y. ; Kong J. ; Wang J. Appl. Surf. Sci 2015, 328 (0), 115.
104 Han W. Q. ; Wen W. ; Yi D. ; Liu Z. ; Maye M. M. ; Lewis L. ; Hanson J. ; Gang O. J.Phys. Chem. C 2007, 111 (39), 14339.
105 Yu Y. ; Wu H. H. ; Zhu B. L. ; Wang S. R. ; Huang W. P. ; Wu S. H. ; Zhang S. M. Catal. Lett 2008, 121 (1-2), 165.
106 Umek P. ; Pregelj M. ; Gloter A. ; Cevc P. ; Jaglicic Z. ; Ceh M. ; Pirnat U. ; Arcon D. J.Phys. Chem. C 2008, 112 (39), 15311.
107 Meksi M. ; Berhault G. ; Guillard C. ; Kochkar H. Catal. Commun 2015, 61, 107.
108 Kim D. H. ; Jang J. S. ; Goo N. H. ; Kwon M. S. ; Lee J. W. ; Choi S. H. ; Shin D. W. ; Kim S. J. ; Lee K. S. Catal. Today 2009, 146 (1-2), 230.
109 Szirmai P. ; Horvath E. ; Nafradi B. ; Mickovic Z. ; Smajda R. ; Djokic D. M. ; Schenk K. ; Forro L. ; Magrez A. J. J.Phys. Chem. C 2013, 117 (1), 697.
110 Long L. Z. ; Wu L. P. ; Yang X. ; Li X. J. Journal of Materials Science & Technology 2014, 30 (8), 765.
111 Kim H. S. ; Kang S. H. ; Chung Y. H. ; Sung Y. E. Electrochem. Solid State Lett 2010, 13 (2), A15.
112 Ivanov S. ; Grieseler R. ; Cheng L. ; Schaaf P. ; Bund A. J. Electroanal. Chem 2014, 731, 6.
113 Brumbarov J. ; Kunze-Liebhaeuser J. J.Power Sources 2014, 258, 129.
114 Guan D. ; Li J. ; Gao X. ; Yuan C. J.Power Sources 2014, 246, 305.
115 Fan Y. ; Zhang N. ; Zhang L. ; Shao H. ; Wang J. ; Zhang J. ; Cao C. Electrochim. Acta 2013, 94, 285.
116 Kulova T. L. ; Skundin A. M. ; Pleskov Y. V. ; Terukov E. I. ; Kon'kov O. I. J.Electroanal. Chem 2007, 600 (1), 217.
117 Wu X. M. ; Zhang S. C. ; Wang L. L. ; Du Z. J. ; Fang H. ; Ling Y. H. ; Huang Z. H. J.Mater. Chem 2012, 22 (22), 11151.
118 Jeun J. H. ; Park K. Y. ; Kim D. H. ; Kim W. S. ; Kim H. C. ; Lee B. S. ; Kim H. ; Yu W. R. ; Kang K. ; Hong S. H. Nanoscale 2013, 5 (18), 8480.
119 Fan Y. ; Zhang N. ; Zhang L. ; Shao H. ; Wang J. ; Zhang J. ; Cao C. Electrochim. Acta 2013, 94 (0), 285.
120 Kang K. Y. ; Lee Y. G. ; Kim S. ; Seo S. R. ; Kim J. C. ; Kim K. M. Mater. Chem. Phys 2012, 137 (1), 169.
121 Park S. J. ; Kim Y. J. ; Lee H. J.Power Sources 2011, 196 (11), 5133.
122 Bresser D. ; Oschmann B. ; Tahir M. N. ; Mueller F. ; Lieberwirth I. ; Tremel W. ; Zentel R. ; Passerini S. J.Electrochem. Soc 2015, 162 (2), A3013.
123 Plylahan N. ; Letiche M. ; Samy Barr M. K. ; Ellis B. ; Maria S. ; Phan T. N. T. ; Bloch E. ; Knauth P. ; Djenizian T. J.Power Sources 2015, 273, 1182.
124 He B. L. ; Dong B. ; Li H. L. Electrochem. Commun 2007, 9 (3), 425.
125 Fang D. ; Huang K. L. ; Liu S. Q. ; Li Z. J. J.Alloy. Compd 2008, 464 (1-2), L5.
126 Kim H. ; Kim M. G. ; Shin T. J. ; Shin H. J. ; Cho J. Electrochem. Commun 2008, 10 (11), 1669.
127 Kang K. Y. ; Shin D. O. ; Lee Y. G. ; Kim S. ; Kim K. M. Journal of Electroceramics 2014, 32 (2-3), 246.
128 Wang J. ; Zhou Y. K. ; Xiong B. ; Zhao Y. Y. ; Huang X. J. ; Shao Z. P. Electrochim. Acta 2013, 88, 847.
129 Tang Y. ; Liu Z. ; Lu X. ; Wang B. ; Huang F. RSC Advances 2014, 4 (68), 36372.
130 Zhu C. ; Xia X. ; Liu J. ; Fan Z. ; Chao D. ; Zhang H. ; Fan H. J. Nano Energy 2014, 4, 105.
131 Ortiz G. F. ; Hanzu I. ; Lavela P. ; Tirado J. L. ; Knauth P. ; Djenizian T. J.Mater. Chem 2010, 20 (20), 4041.
132 Kim K. M. ; Kang K. Y. ; Kim S. ; Lee Y. G. Current Applied Physics 2012, 12 (4), 1199.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 581-597.
[2] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[3] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[4] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[5] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.
[6] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2261-2267.
[7] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2293-2300.
[8] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2042-2051.
[9] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[10] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[11] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.
[12] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2287-2292.
[13] Jia-Jun HUANG,Zhi-Jun DONG,Xu ZHANG,Guan-Ming YUAN,Ye CONG,Zheng-Wei CUI,Xuan-Ke LI. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1699-1707.
[14] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1593-1603.
[15] Li-Li CAI,Yue-Hua WEN,Jie CHENG,Gao-Ping CAO,Yu-Sheng YANG. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 969-974.